Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Realization of the level one standard $ \tilde{C}_{2k+1}$-modules


Author: Kailash C. Misra
Journal: Trans. Amer. Math. Soc. 321 (1990), 483-504
MSC: Primary 17B67; Secondary 17B10
DOI: https://doi.org/10.1090/S0002-9947-1990-1005082-2
MathSciNet review: 1005082
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the level one standard (or irreducible integrable highest weight) modules for the affine symplectic Lie algebras. In particular, we give concrete realizations of all level one standard modules for the affine symplectic Lie algebras of even rank.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, G.-C. Rota (ed.), Addison-Wesley, Reading, Mass., 1976. MR 0557013 (58:27738)
  • [2] D. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227. MR 556608 (81i:10019)
  • [3] D. Bernard and J. Thierry-Mieg, Level one representations of the simple affine Kac-Moody algebras in their homogeneous gradations, Comm. Math. Phys. 111 (1987), 181-246. MR 899850 (88m:17016)
  • [4] I. B. Frenkel, Two constructions of affine Lie algebra representations and Boson-Fermion correspondence in quantum field theory, J. Funct. Anal. 44 (1981), 259-327. MR 643037 (83b:17012)
  • [5] I. B. Frenkel and V. G. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980), 23-66. MR 595581 (84f:17004)
  • [6] P. Goddard, W. Nahm, D. Olive and A. Schwimmer, Vertex operators for non-simply laced algebras, Comm. Math. Phys. 107 (1986), 179-212. MR 863639 (87k:17022)
  • [7] V. G. Kac, Infinite-dimensional Lie algebras (2nd ed.), Cambridge Univ. Press, Cambridge, 1985. MR 823672 (87c:17023)
  • [8] V. G. Kac and D. H. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 3308-3312. MR 619827 (82j:17019)
  • [9] -, $ 112$ constructions of the basis representation of the loop group of $ {E_8}$, Symposium on Anomalies, Geometry, Topology, 1985, Proceedings, W. A. Bardeen and A. R. White (eds.), World Scientific, Singapore, 1985, pp. 276-298. MR 850863 (88c:17022)
  • [10] V. G. Kac, D. A. Kazhdan, J. Lepowsky and R. L. Wilson, Realization of basic representations of the euclidean Lie algebras, Adv. in Math. 42 (1981), 83-112. MR 633784 (83a:17016)
  • [11] J. Lepowsky, Lectures on Kac-Moody Lie algebras, Université Paris VI, Spring, 1978.
  • [12] -, Calculus of twisted vertex operators, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), 8295-8299. MR 820716 (88f:17030)
  • [13] J. Lepowsky and M. Primc, Standard modules for type one affine Lie algebras, Number Theory, Lecture Notes in Math., vol. 1052, Springer-Verlag, New York, 1984, pp. 194-251. MR 750666 (86f:17015)
  • [14] -, Structure of the standard modules for the affine Lie algebra $ A_1^{(1)}$, Contemp. Math., vol. 46, Amer. Math. Soc., Providence, R.I., 1985. MR 814303 (87g:17021)
  • [15] J. Lepowsky and R. L. Wilson, Construction of the affine Lie algebra $ A_1^{(1)}$, Comm. Math. Phys. 62 (1978), 43-53. MR 0573075 (58:28089)
  • [16] -, A new family of algebras underlying the Rogers-Ramanujan identities and generalizations, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 7254-7258. MR 638674 (82k:10016)
  • [17] -, A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities, Adv. in Math. 45 (1982), 21-72. MR 663415 (84d:05021)
  • [18] -, The structure of standard modules, I. Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), 199-290. MR 752821 (85m:17008)
  • [19] -, The structure of standard modules, II. The case $ A_1^{(1)}$, principal gradation, Invent. Math. 79 (1985), 417-442. MR 782227 (86g:17014)
  • [20] M. Mandia, Structure of the level one standard modules for the affine Lie algebras $ B_l^{(1)}$, $ F_4^{(1)}$ and $ G_2^{(1)}$, Mem. Amer. Math. Soc. 362 (1987).
  • [21] A. Meurman and M. Primc, Annihilating ideals of standard modules of $ \underline {sl} {(2,\mathbb{C})^ \sim }$, and combinatorial identities, Adv. in Math. 64 (1987), 177-240. MR 888628 (89c:17031)
  • [22] K. C. Misra, Structure of certain standard modules for $ A_n^{(1)}$ and the Rogers-Ramanujan identities, J. Algebra 88 (1984), 196-227. MR 741940 (85i:17018)
  • [23] -, Structure of some standard modules for $ C_n^{(1)}$, J. Algebra 90 (1984), 384-409.
  • [24] -, Constructions of fundamental representations of symplectic affine Lie algebras, Topological and Geometrical Methods in Field Theory, J. Hietarinta and J. Westerholm (eds.), World Scientific, Singapore, 1986, pp. 147-169. MR 1026487 (90j:17045)
  • [25] -, Realization of the level two standard $ \underline {sl} {(2k + 1,\mathbb{C})^ \sim }$-modules, Trans. Amer. Math. Soc. 316 (1989), 295-309. MR 937880 (90b:17033)
  • [26] G. Segal, Unitary representations of some infinite-dimensional groups Comm. Math. Phys. 80 (1981), 301-342. MR 626704 (82k:22004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B67, 17B10

Retrieve articles in all journals with MSC: 17B67, 17B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-1005082-2
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society