Cardinal conditions for strong Fubini theorems
Author:
Joseph Shipman
Journal:
Trans. Amer. Math. Soc. 321 (1990), 465481
MSC:
Primary 03E15; Secondary 03E35, 28A20, 28A35
MathSciNet review:
1025758
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: If are cardinals with the cardinality of a nonmeasurable set, and for is the cardinality of a set of reals which is not the union of measure0 sets, then for any nonnegative function all of the iterated integrals , which exist are equal. If all of the integrals exist, then the weaker condition of the case implies they are equal. These cardinal conditions are consistent with and independent of ZFC, and follow from the existence of a realvalued measure on the continuum. Other necessary conditions and sufficient conditions for the existence and equality of iterated integrals are also treated.
 [C]
Chris
Freiling, Axioms of symmetry: throwing darts at the real number
line, J. Symbolic Logic 51 (1986), no. 1,
190–200. MR
830085 (87f:03148), http://dx.doi.org/10.2307/2273955
 [D]
Fremlin, [1983] Cichón's diagram, Séminaire Initiation à l'Analyse 23 (1983/84), no. 5.
 1.
D.
H. Fremlin, Measureadditive coverings and measurable
selectors, Dissertationes Math. (Rozprawy Mat.) 260
(1987), 116. MR
928693 (89e:28012)
 [H]
Harvey
Friedman, A consistent FubiniTonelli theorem for nonmeasurable
functions, Illinois J. Math. 24 (1980), no. 3,
390–395. MR
573474 (82b:03097)
 [M]
Moti
Gitik and Saharon
Shelah, Forcings with ideals and simple forcing notions,
Israel J. Math. 68 (1989), no. 2, 129–160. MR 1035887
(91g:03104), http://dx.doi.org/10.1007/BF02772658
 [K]
Philosophy of mathematics: Selected readings, Edited and with an
introduction by Paul Benacerraf and Hilary Putnam, PrenticeHall, Inc.,
Englewood Cliffs, N.J., 1964. MR 0166055
(29 #3333)
 [S]
Stanley
P. Gudder, Probability manifolds, J. Math. Phys.
25 (1984), no. 8, 2397–2401. MR 751521
(85h:81008), http://dx.doi.org/10.1063/1.526461
 [T]
Thomas
Jech, Set theory, Academic Press [Harcourt Brace Jovanovich,
Publishers], New YorkLondon, 1978. Pure and Applied Mathematics. MR 506523
(80a:03062)
 [K]
Kenneth
Kunen, Random and Cohen reals, Handbook of settheoretic
topology, NorthHolland, Amsterdam, 1984, pp. 887–911. MR 776639
(86d:03049)
 [I]
Itamar
Pitowsky, Deterministic model of spin and statistics, Phys.
Rev. D (3) 27 (1983), no. 10, 2316–2326. MR 704118
(84i:81006), http://dx.doi.org/10.1103/PhysRevD.27.2316
 [A]
A.
N. Shiryayev, Probability, Graduate Texts in Mathematics,
vol. 95, SpringerVerlag, New York, 1984. Translated from the Russian
by R. P. Boas. MR
737192 (85a:60007)
 [R]
Robert
M. Solovay, A model of settheory in which every set of reals is
Lebesgue measurable, Ann. of Math. (2) 92 (1970),
1–56. MR
0265151 (42 #64)
 2.
Robert
M. Solovay, Realvalued measurable cardinals, Axiomatic set
theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los
Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971,
pp. 397–428. MR 0290961
(45 #55)
 [S]
Ulam, [1930] Zur Masstheorie in der algemeinen Mengenlehre, Fund. Math. 16 (1930), 140150.
 [C]
 Freiling, [1986] Axioms of symmetry: throwing darts at the real number line, J. Symbolic Logic 51 (1986), 190200. MR 830085 (87f:03148)
 [D]
 Fremlin, [1983] Cichón's diagram, Séminaire Initiation à l'Analyse 23 (1983/84), no. 5.
 1.
 , [1987] Measureadditive coverings and measurable selectors, Dissertationes Math. 260 (1987). MR 928693 (89e:28012)
 [H]
 Friedman, [1980] A consistent FubiniTonelli theorem for nonmeasurable functions, Illinois J. Math. 24 (1980), 390395. MR 573474 (82b:03097)
 [M]
 Gitik and S. Shelah, [1988] Forcing with ideals and simple forcing notions, preprint. MR 1035887 (91g:03104)
 [K]
 Gàdel, [1964] What is Cantor's Continuum Problem?, Philosophy of Mathematics, edited by P. Benacerraf and H. Putnam, PrenticeHall, Englewood Cliffs, N.J., 1964. MR 0166055 (29:3333)
 [S]
 Gudder, [1984] Probability manifolds, J. Math. Phys. 25 (1984), 23972401. MR 751521 (85h:81008)
 [T]
 Jech, [1978] Set theory (Academic Press, New York, 1978). MR 506523 (80a:03062)
 [K]
 Kunen, [1984] Random and Cohen reals, Chapter 20 of Handbook of SetTheoretic Topology, edited by K. Kunen and J. E. Vaughan, Elsevier Science Publishers, 1984. MR 776639 (86d:03049)
 [I]
 Pitowsky, [1983] Deterministic models of spin and statistics, Phys. Rev. D 27 (1983), 23162326. MR 704118 (84i:81006)
 [A]
 Shiryayev, [1984] Probability, SpringerVerlag, New York, 1984. MR 737192 (85a:60007)
 [R]
 Solovay, [1970] A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), 156. MR 0265151 (42:64)
 2.
 , [1971] Realvalued measurable cardinals, Axiomatic Set Theory, edited by D. Scott, Proc. Sympos. Pure Math., vol. 13, part 1, Amer. Math. Soc., Providence, R.I., 1971, pp. 397428. MR 0290961 (45:55)
 [S]
 Ulam, [1930] Zur Masstheorie in der algemeinen Mengenlehre, Fund. Math. 16 (1930), 140150.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
03E15,
03E35,
28A20,
28A35
Retrieve articles in all journals
with MSC:
03E15,
03E35,
28A20,
28A35
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947199010257580
PII:
S 00029947(1990)10257580
Keywords:
Fubini theorem(s),
realvalued measurable cardinals,
nonmeasurable sets
Article copyright:
© Copyright 1990
American Mathematical Society
