Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Tiled orders of finite global dimension


Author: Hisaaki Fujita
Journal: Trans. Amer. Math. Soc. 322 (1990), 329-341
MSC: Primary 16H05; Secondary 16E10
DOI: https://doi.org/10.1090/S0002-9947-1990-0968884-4
Erratum: Trans. Amer. Math. Soc. 327 (1991), 919-920.
MathSciNet review: 968884
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We define a projective link between maximal ideals, with respect to which an idealizer preserves being of finite global dimension. Let $ D$ be a local Dedekind domain with the quotient ring $ K$. We show that for $ 2 \leq n \leq 5$, every tiled $ D$-order of finite global dimension in $ {(K)_n}$ is obtained by iterating idealizers w.r.t. projective links from a hereditary order. For $ n \geq 6$, we give a tiled $ D$-order in $ {(K)_n}$ without this property, which is also a counterexample to Tarsy's conjecture, saying that the maximum finite global dimension of such an order is $ n - 1$.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. MR 0157984 (28:1212)
  • [2] H. Fujita, An idealizer with respect to a link between maximal ideals, Comm. Algebra 16 (1988), 1053-1082. MR 926337 (89f:16008)
  • [3] K. R. Goodearl, Subrings of idealizer rings, J. Algebra 33 (1975), 405-429. MR 0357510 (50:9978)
  • [4] V. A. Jategaonkar, Global dimension of triangular orders over a discrete valuation ring, Proc. Amer. Math. Soc. 38 (1973), 8-14. MR 0309988 (46:9091)
  • [5] -, Global dimension of tiled orders over a discrete valuation ring, Trans. Amer. Math. Soc. 196 (1974), 313-330. MR 0349729 (50:2222)
  • [6] E. Kirkman and J. Kuzmanovich, Global dimension of a class of orders, preprint, Wake Forest Univ., 1988.
  • [7] J. C. Robson, Idealizers and hereditary noetherian prime rings, J. Algebra 22 (1972), 45-81. MR 0299639 (45:8687)
  • [8] R. Tarsy, Global dimension of orders, Trans. Amer. Math. Soc. 151 (1970), 335-340. MR 0268226 (42:3125)
  • [9] A. Wiedemann and K. W. Roggenkamp, Path orders of global dimension two, J. Algebra 80 (1983), 113-133. MR 690707 (84k:16039)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16H05, 16E10

Retrieve articles in all journals with MSC: 16H05, 16E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0968884-4
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society