Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ L\sp 1$-approximation with constraints


Authors: Allan Pinkus and Hans Strauss
Journal: Trans. Amer. Math. Soc. 322 (1990), 239-261
MSC: Primary 41A50; Secondary 41A29, 41A52
DOI: https://doi.org/10.1090/S0002-9947-1990-0986698-6
MathSciNet review: 986698
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study problems of best $ {L^1}$-approximation to continuous functions from finite-dimensional subspaces under a variety of constraints. Included are problems of bounded coefficient approximation, approximation with interpolation, restricted range approximation, and restricted range and derivative approximation. Emphasis is placed on problems of uniqueness.


References [Enhancements On Off] (What's this?)

  • [1] B. L. Chalmers, A unified approach to uniform real approximation by polynomials with linear restrictions, Trans. Amer. Math. Soc. 166 (1972), 309-316. MR 0294962 (45:4030)
  • [2] B. L. Chalmers and G. D. Taylor, Uniform approximation with constraints, Jber. Deutsch. Math.-Verein. 81 (1979), 49-86. MR 535098 (80d:41010)
  • [3] E. W. Cheney and D. E. Wulbert, The existence and unicity of best approximations, Math. Scand. 24 (1969), 113-140. MR 0261241 (41:5857)
  • [4] R. J. Duffin and L. A. Karlovitz, Formulation of linear programs in analysis. I: Approximation theory, SIAM J. Appl. Math. 16 (1968), 662-675. MR 0234186 (38:2504)
  • [5] K. R. Gehner, Characterization theorems for constrained approximation problems via optimization theory, J. Approx. Theory 14 (1975), 51-76. MR 0372496 (51:8703)
  • [6] R. C. Jones and L. A. Karlovitz, Equioscillation under nonuniqueness in the approximation of continuous functions, J. Approx. Theory 3 (1970), 138-145. MR 0264303 (41:8899)
  • [7] A. Kroó, On an $ {L^1}$-approximation problem, Proc. Amer. Math. Soc. 94 (1985), 406-410. MR 787882 (86h:41028)
  • [8] -, Best $ {L_1}$-approximation with varying weights, Proc. Amer. Math. Soc. 99 (1987), 66-70. MR 866431 (88d:41038)
  • [9] S. Paszkowski, On approximating with nodes, Rozprawy Mat. 14 (1957), 1-62. MR 0092888 (19:1175b)
  • [10] R. R. Phelps, Čebyšev subspaces of finite dimension in $ {L_1}$, Proc. Amer. Math. Soc. 17 (1966), 646-652. MR 0194882 (33:3088)
  • [11] A. Pinkus, Unicity subspaces in $ {L^1}$-approximation, J. Approx. Theory 48 (1986), 226-250. MR 862238 (88a:41014)
  • [12] -, On $ {L^1}$-approximation, Cambridge Tracts in Math., No. 93, Cambridge Univ. Press, Cambridge, 1987.
  • [13] A. Pinkus and H. Strauss, One-sided $ {L^1}$-approximation to differentiable functions, Approx. Theory Appl. 3 (1987), 81-96. MR 967135 (90a:41023)
  • [14] -, Best approximation with coefficient constraints, IMA J. Numer. Anal. 8 (1988), 1-22. MR 967840 (90d:41052)
  • [15] A. Pinkus and V. Totik, One-sided $ {L^1}$-approximation, Canad. Math. Bull. 29 (1986), 84-90. MR 824889 (87g:41068)
  • [16] A. Pinkus and B. Wajnryb, Necessary conditions for uniqueness in $ {L^1}$-approximation, J. Approx. Theory 53 (1988), 54-66. MR 937143 (89g:41017)
  • [17] D. Schmidt, A theorem on weighted $ {L^1}$-approximation, Proc. Amer. Math. Soc. 101 (1987), 81-84. MR 897074 (88h:41041)
  • [18] Y. Shi, Uniqueness of best $ L$ approximation from a convex set for continuous functions, Approx. Theory Appl. 2 (1986), 19-27.
  • [19] M. Sommer, Some results on best $ {L_1}$-approximation of continuous functions, Numer. Funct. Anal. Optim. 6 (1983), 253-271. MR 730354 (85c:41045)
  • [20] M. Sommer and H. Strauss, Eigenschaften von schwach tschebyscheffschen Räumen, J. Approx. Theory 21 (1977), 257-268. MR 0467119 (57:6986)
  • [21] B. Stockenberg, On the number of zeros of functions in a weak Tchebyshev-space, Math. Z. 156 (1977), 49-57. MR 0487208 (58:6868)
  • [22] -, Subspaces of weak and oriented Tchebyshev-spaces, Manuscripta Math. 20 (1977), 401-409. MR 0442555 (56:936)
  • [23] H. Strauss, Eindeutigkeit in der $ {L_1}$-Approximation, Math. Z. 176 (1981), 63-74. MR 606172 (82e:41042)
  • [24] -, Unicity of best one-sided $ {L_1}$-approximations, Numer. Math. 40 (1982), 229-243. MR 684185 (84b:41024)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A50, 41A29, 41A52

Retrieve articles in all journals with MSC: 41A50, 41A29, 41A52


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0986698-6
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society