Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Time-delay operators in semiclassical limit. II. Short-range potentials


Author: Xue Ping Wang
Journal: Trans. Amer. Math. Soc. 322 (1990), 395-416
MSC: Primary 35P25; Secondary 35J10, 35S99, 47F05, 81Q20
DOI: https://doi.org/10.1090/S0002-9947-1990-0987170-X
MathSciNet review: 987170
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This work is a continuation of [27]. We prove that quantum time-delay operator localized in a nontrapping energy interval is in fact an $ h$-pseudodifferential operator with the $ h$-principal symbol given by the classical time-delay function composed with the incoming wave operator in classical mechanics. The classical limit of time-delay operator is also given.


References [Enhancements On Off] (What's this?)

  • [1] W. O. Amrein and M. Cibils, Global and Eisenbud-Wigner time-dealy in scattering theory, Helv. Phys. Acta 60 (1987), 481-500. MR 904165 (88m:81129)
  • [2] W. O. Amrein, M. Cibils, and K. Sinha, Configuration space properties of the $ S$-matrix and time-delay in potential scattering, Ann. Inst. H. Poincaré Sect. A (N.S.) 47 (1987), 367-382. MR 933683 (89d:35135)
  • [3] V. Enss, Asymptotic completeness for quantum mechanical potential scattering. I, Comm. Math. Phys. 61 (1978), 285-291. MR 0523013 (58:25583)
  • [4] B. Helffer and D. Robert, Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal. 53 (1983), 246-268. MR 724029 (85i:47052)
  • [5] H. Isozaki, Differentiability of generalized Fourier transform associated with Schràdinger operators, J. Math. Kyoto Univ. 25 (1985), 789-806. MR 810981 (87e:35072)
  • [6] H. Isozaki and H. Kitada, Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo 32 (1985), 77-104. MR 783182 (86j:35125)
  • [7] -, A remark on the microlocal resolvent estimates for two-body Schràdinger operators, RIMS, Kyoto University, 1986.
  • [8] A. Jensen, Propagation estimates for Schrodinger type operators, Trans. Amer. Math. Soc. 291 (1985), 129-144. MR 797050 (86k:35119)
  • [9] A. Jensen, E. Mourre and P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré 41A (1984), 207-225. MR 769156 (86j:35126)
  • [10] H. Kitada, A relation between the modified wave operators $ W_J^ \pm $ and $ W_D^ \pm $, preprint 1986.
  • [11] Ph. Martin, Time-delay of quantum scattering processes, Acta Phys. Austriaca Suppl. 23 (1981), 157-208. MR 665756 (83k:81095)
  • [12] V. P. Maslov and M. V. Fedoriuk, Semiclassical approximation in quantum mechanics, Reidel, Dordrecht, 1981. MR 634377 (84k:58226)
  • [13] S. Nakamura, Time-delay and Lavine's formula, Comm. Math. Phys. 109 (1987), 397-415. MR 882807 (88f:35119)
  • [14] H. Narnhofer, Time-delay and dilation properties in scattering theory, J. Math. Phys. 25 (1984), 987-991. MR 739251 (85d:81159)
  • [15] R. Newton, Scattering theory of waves and particles, texts and monographs in physics, 2nd ed., Springer-Verlag, 1982. MR 666397 (84f:81001)
  • [16] M. Reed and B. Simon, Methods of modern mathematical physics. III, Scattering theory, Academic Press, New York, 1979. MR 529429 (80m:81085)
  • [17] D. Robert, Autour de l'approximation semiclassique, Progr. Math., No. 68, Birkhäuser, 1987.
  • [18] D. Robert and H. Tamura, Semiclassical asymptotics for spectral density and time-delay problem in scattering processes, J. Funct. Anal. 80 (1988), 124-147. MR 960227 (90g:35124)
  • [19] -, Asymptotic behavior of scattering amplitudes in semiclassical and low energy limits, to appear.
  • [20] A. V. Sobolev and D. R. Yafaev, On the quasi-classical limit of the total scattering cross section in non relativistic quantum mechanics, Ann. Inst. H. Poincaré Sect. A (N.S.) 44 (1986), 195-210. MR 839284 (87j:81256)
  • [21] X. P. Wang, Etude semiclassique d'observables quantiques, Ann. Fac. Sci. Toulouse Math. 7 (1985), 101-135. MR 842765 (87j:81054)
  • [22] -, Approximation semiclassique de l'équation de Heisenberg, Comm. Math. Phys. 104 (1986), 77-86. MR 834482 (88b:81038)
  • [23] -, Phase space description of time-delay in scattering theory, Comm. Partial Differential Equations 13 (1988), 223-259. MR 914819 (89g:35088)
  • [24] -, Time-delay operator for a class of singular potentials, Helv. Phys. Acta 60 (1987), 501-509. MR 904166 (88m:81130)
  • [25] -, Time-delay of scattering solutions and resolvent estimates for semiclassical Schrodinger operators, J. Differential Equations 71 (1988), 248-296. MR 927007 (89i:35110)
  • [26] -, Time-delay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré Sect. A (N.S.) 47 (1987), 25-37. MR 912755 (88k:81039)
  • [27] -, Time-delay operators in semiclassical limit. I,--Finite range potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 1-34. MR 1001028 (91b:35087)
  • [28] K. Yajima, The quasi classical limit of scattering amplitude--$ {L^2}$ approach for short range potentials, Japan J. Math. 13 (1987), 77-126. MR 914315 (88i:35129)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35P25, 35J10, 35S99, 47F05, 81Q20

Retrieve articles in all journals with MSC: 35P25, 35J10, 35S99, 47F05, 81Q20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0987170-X
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society