Boundary behavior of the fast diffusion equation

Author:
Y. C. Kwong

Journal:
Trans. Amer. Math. Soc. **322** (1990), 263-283

MSC:
Primary 35K55; Secondary 35B99

MathSciNet review:
1008697

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The fast diffusion equation , , is a degenerate nonlinear parabolic equation of which the existence of a unique continuous weak solution has been established. In this paper we are going to obtain a Lipschitz growth rate of the solution at the boundary of and estimate that in terms of the various data.

**[1]**Philippe Bénilan and Michael G. Crandall,*The continuous dependence on 𝜙 of solutions of 𝑢_{𝑡}-Δ𝜙(𝑢)=0*, Indiana Univ. Math. J.**30**(1981), no. 2, 161–177. MR**604277**, 10.1512/iumj.1981.30.30014**[2]**James G. Berryman and Charles J. Holland,*Stability of the separable solution for fast diffusion*, Arch. Rational Mech. Anal.**74**(1980), no. 4, 379–388. MR**588035**, 10.1007/BF00249681**[3]**M. Bertsch and L. A. Peletier,*Porous media type equations: An overview*, Mathematical Institute Publication, no. 7, University of Leiden, 1983.**[4]**Filippo M. Chiarenza and Raul P. Serapioni,*A Harnack inequality for degenerate parabolic equations*, Comm. Partial Differential Equations**9**(1984), no. 8, 719–749. MR**748366**, 10.1080/03605308408820346**[5]**Michael Crandall and Michel Pierre,*Regularizing effects for 𝑢_{𝑡}+𝐴𝜙(𝑢)=0 in 𝐿¹*, J. Funct. Anal.**45**(1982), no. 2, 194–212. MR**647071**, 10.1016/0022-1236(82)90018-0**[6]**Gregorio Díaz and Ildefonso Diaz,*Finite extinction time for a class of nonlinear parabolic equations*, Comm. Partial Differential Equations**4**(1979), no. 11, 1213–1231. MR**546642**, 10.1080/03605307908820126**[7]**Emmanuele DiBenedetto,*Continuity of weak solutions to a general porous medium equation*, Indiana Univ. Math. J.**32**(1983), no. 1, 83–118. MR**684758**, 10.1512/iumj.1983.32.32008**[8]**Ya Zhe Chen and Emmanuele DiBenedetto,*On the local behavior of solutions of singular parabolic equations*, Arch. Rational Mech. Anal.**103**(1988), no. 4, 319–345. MR**955531**, 10.1007/BF00251444**[9]**M. A. Herrero and J. L. Vázquez,*Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem*, Ann. Fac. Sci. Toulouse Math. (5)**3**(1981), no. 2, 113–127 (English, with French summary). MR**646311****[10]**Jerry L. Kazdan and F. W. Warner,*Remarks on some quasilinear elliptic equations*, Comm. Pure Appl. Math.**28**(1975), no. 5, 567–597. MR**0477445****[11]**N. Krylov and M. Safonov,*A certain property of solutions of parabolic equations with measurable coefficients*, Math. USSR Izv.**16**(1981), 151-164.**[12]**Ying C. Kwong,*Interior and boundary regularity of solutions to a plasma type equation*, Proc. Amer. Math. Soc.**104**(1988), no. 2, 472–478. MR**962815**, 10.1090/S0002-9939-1988-0962815-5**[13]**-,*Asymptotic behaviour of a plasma type equation at finite extinction*, Arch. Rational Mech. Anal.**104**(1988).**[14]**Jürgen Moser,*A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math.**17**(1964), 101–134. MR**0159139****[15]**J. Moser,*On a pointwise estimate for parabolic differential equations*, Comm. Pure Appl. Math.**24**(1971), 727–740. MR**0288405****[16]**S. Pohozaev,*Eigen functions of the equation*, Soviet Math. Dokl.**165**(1965), 1408-1411.**[17]**E. S. Sabanina,*A class of non-linear degenerate parabolic equations*, Soviet Math. Dokl.**143**(1962), 495-498.**[18]**Paul E. Sacks,*Continuity of solutions of a singular parabolic equation*, Nonlinear Anal.**7**(1983), no. 4, 387–409. MR**696738**, 10.1016/0362-546X(83)90092-5**[19]**G. Schroeder, Ph. D. Thesis, University of Wisconsin-Madison (to appear).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35K55,
35B99

Retrieve articles in all journals with MSC: 35K55, 35B99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-1008697-0

Article copyright:
© Copyright 1990
American Mathematical Society