Boundary behavior of the fast diffusion equation

Author:
Y. C. Kwong

Journal:
Trans. Amer. Math. Soc. **322** (1990), 263-283

MSC:
Primary 35K55; Secondary 35B99

DOI:
https://doi.org/10.1090/S0002-9947-1990-1008697-0

MathSciNet review:
1008697

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The fast diffusion equation , , is a degenerate nonlinear parabolic equation of which the existence of a unique continuous weak solution has been established. In this paper we are going to obtain a Lipschitz growth rate of the solution at the boundary of and estimate that in terms of the various data.

**[1]**Benilan and M. G. Crandall,*The continuous dependence on**of the solution of*, Indiana Univ. Math. J.**30**(1981). MR**604277 (83d:35071)****[2]**J. G. Berryman and C. Holland,*Stability of the separable solution for fast diffusion*, Arch. Rational Mech. Anal.**74**(1980). MR**588035 (81m:35065)****[3]**M. Bertsch and L. A. Peletier,*Porous media type equations: An overview*, Mathematical Institute Publication, no. 7, University of Leiden, 1983.**[4]**F. Chiarenza and R. Serapioni,*A Harnack inequality for degenerate parabolic equations*, Comm. Partial Differential Equations**9**(1984), 719-749. MR**748366 (86c:35082)****[5]**M. G. Crandall and M. Pierre,*Regularization effects for*in , J. Funct. Anal.**45**(1982). MR**647071 (83g:34071)****[6]**D. G. Diaz and D. J. Diaz,*Finite extinction time for a class of non-linear parabolic equations*, Comm Partial Differential Equations**4**(1979), 1213-1231. MR**546642 (80k:35043)****[7]**E. Di Benedetto,*Continuity of weak solutions to a general porous medium equation*, Indiana Univ. Math. J.**32**(1983). MR**684758 (85c:35010)****[8]**E. Di Benedetto and Ya-Zhe Chen,*On the local behavior of solutions of singular parabolic equations*, Arch. Rational Mech. Anal. (to appear). MR**955531 (89k:35107)****[9]**M. A. Herrero and J. L. Vazquez,*Asymptotic behaviour of the solutions of a strong non-linear parabolic problem*, Ann. Fac. Sci. Toulouse Math. (5)**3**(1981), 113-127. MR**646311 (83e:35016)****[10]**J. Kazdan and F. Warner,*Remarks on some quasilinear elliptic equations*, Comm. Pure Appl. Math.**28**(1975), 567-597. MR**0477445 (57:16972)****[11]**N. Krylov and M. Safonov,*A certain property of solutions of parabolic equations with measurable coefficients*, Math. USSR Izv.**16**(1981), 151-164.**[12]**Y. C. Kwong,*Extinction and interior and boundary regularity of plasma type equation with non-negative initial data and homogeneous Dirichlet boundary condition*, Proc. Amer. Math. Soc.**104**(1988). MR**962815 (90d:35143)****[13]**-,*Asymptotic behaviour of a plasma type equation at finite extinction*, Arch. Rational Mech. Anal.**104**(1988).**[14]**J. Moser,*A Harnack inequality for parabolic differential equations*, Comm. Pure Appl. Math.**17**(1964), 101-134. MR**0159139 (28:2357)****[15]**-,*On a pointwise estimate for parabolic differential equations*, Comm. Pure Appl. Math.**24**(1971), 727-740. MR**0288405 (44:5603)****[16]**S. Pohozaev,*Eigen functions of the equation*, Soviet Math. Dokl.**165**(1965), 1408-1411.**[17]**E. S. Sabanina,*A class of non-linear degenerate parabolic equations*, Soviet Math. Dokl.**143**(1962), 495-498.**[18]**P. E. Sacks,*Continuity of solutions of a singular parabolic equation*, Nonlinear Anal.**7**(1983), 387-409. MR**696738 (84d:35081)****[19]**G. Schroeder, Ph. D. Thesis, University of Wisconsin-Madison (to appear).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35K55,
35B99

Retrieve articles in all journals with MSC: 35K55, 35B99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-1008697-0

Article copyright:
© Copyright 1990
American Mathematical Society