Epicomplete Archimedean -groups and vector lattices

Authors:
Richard N. Ball and Anthony W. Hager

Journal:
Trans. Amer. Math. Soc. **322** (1990), 459-478

MSC:
Primary 46A40; Secondary 06F20, 46M15

MathSciNet review:
943603

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An object in a category is *epicomplete* provided that the only morphisms out of which are simultaneously epi and mono are the isomorphisms. We characterize the epicomplete objects in the category , whose objects are the archimedean lattice-ordered groups (archimedean -groups) and whose morphisms are the maps preserving both group and lattice structure (-homomorphisms). Recall that a space is *basically disconnected* if the closure of each cozero subset is open.

**Theorem.** *The following are equivalent for* .

(a) *is* *epicomplete*.

(b) *is an* *extremal suboject of* *for some basically disconnected compact Hausdorff space* . *Here* *denotes the continuous extended real-valued functions on* *which are finite on a dense subset*.

(c) *is conditionally and laterally* -*complete* (*meaning each countable subset of positive elements of* *which is either bounded or pairwise disjoint has a supremum*), *and* *is divisible*.

The analysis of rests on an analysis of the closely related category , whose objects are of the form , where and is a *weak unit* (meaning implies for all ), and whose morphisms are the -homomorphism preserving the weak unit.

**Theorem.** *The following are equivalent for* .

(a) *is* *epicomplete*.

(b) *is* *isomorphic to* .

(c) *is conditionally and laterally* -*complete, and* *is divisible*.

**[AC]**M. Anderson and P. F. Conrad,*Epicomplete*-*groups*, Algebra Universalis**12**(1981), 224-241. MR**608666 (82d:06017)****[B]**S. J. Bernau,*Unique representation of archimedean lattice groups and normal archimedean lattice rings*, Proc. London Math. Soc. (3)**16**(1966), 107-130. MR**0188113 (32:5554)****[BH I]**R. N. Ball and A. W. Hager,*Epimorphisms in archimedean*-*groups and vector lattices*, Lattice-Ordered Groups, Advances and Techniques, (A. M. W. Glass and W. Charles Holland, Eds), Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1989.**[BH III]**-,*Epimorphisms in archimedean*-*groups and vector lattices with weak unit*(*and Baire functions*), J. Austral. Math. Soc. (Ser. A)**48**(1990), 25-56. MR**1026835 (91g:06016)****[BH IV]**-,*Archimedean kernel distinguishing extensions of archimedean*-*groups with weak unit*, Indiana J. Math.**29**(1987), 351-368. MR**971646 (89m:06022)****[BH V]**-,*Algebraic extensions and closure of archimedean*-*groups and vector lattices*(in preparation).**[BKW]**A. Bigard, K. Keimel, and S. Wolfenstein,*Groupes et anneaux reticules*, Lecture Notes in Math., Vol. 608, Springer-Verlag, Berlin, Heidelberg and New York, 1977. MR**0552653 (58:27688)****[BL]**R. D. Byrd and J. T. Lloyd,*Closed subgroups and complete distributivity in lattice-ordered groups*, Math. Z.**101**(1967), 123-130. MR**0218284 (36:1371)****[C1]**P. F. Conrad,*The essential closure of an archimedean lattice ordered group*, Proc. London Math. Soc.**38**(1971), 151-160. MR**0277457 (43:3190)****[C2]**-,*The structure of an*-*group that is determined by its minimal prime subgroups*, Ordered Groups, Lecture Notes in Pure and Appl. Math., Vol. 62, Dekker, New York, 1980.**[GJ]**L. Gillman and M. Jerison,*Rings of continuous functions*, Van Nostrand, reprinted as Graduate Texts in Math., 43, Springer-Verlag, Berlin, Heidelberg and New York, 1976. MR**0407579 (53:11352)****[HR]**A. W. Hager and L. C. Robertson,*Representing and ringi[ill]ng a Riesz space*, Symposia Mathematica**21**(1977), 411-431. MR**0482728 (58:2783)****[HJe]**M. Henriksen and M. Jerison,*The space of minimal prime ideals of a commutative ring*, Trans. Amer. Math. Soc.**115**(1965), 110-130. MR**0194880 (33:3086)****[HJ]**M. Henriksen and D. G. Johnson,*On the structure of a class of Archimedean lattice-ordered algebras*, Fund. Math.**50**(1961), 73-94. MR**0133698 (24:A3524)****[HVW]**M. Henriksen, J. Vermeer, and R. G. Woods,*Quasi-F covers of Tychonoff spaces*, Trans. Amer. Math. Soc.**303**(1987), 779-803. MR**902798 (88m:54049)****[HS]**H. Herrlich and G. Strecker,*Category theory*, Allyn & Bacon, Boston, Mass., 1973. MR**0349791 (50:2284)****[K]**J. Kist,*Minimal prime ideals in commutative semigroups*, Proc. London Math. Soc. (3)**13**(1963), 31-50. MR**0143837 (26:1387)****[L]**R. Lagrange,*Amalgamation and epimorphisms in*-*complete Boolean algebras*, Algebra Universalis**4**(1974), 177-179. MR**0364045 (51:300)****[LZ]**W. Luxemburg and A. Zaanen,*Riesz spaces*, Vol. I, North-Holland, Amsterdam, 1971. MR**0511676 (58:23483)****[MV]**J. J. Madden and J. Vermeer,*Epicomplete archimedean*-*groups via a localic Yosida theorem*J. Pure Appl. Algebra (to appear).**[S]**M. H. Stone,*Boundedness properties in function lattices*, Canad. J. Math.**1**(1949), 176-186. MR**0029091 (10:546a)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46A40,
06F20,
46M15

Retrieve articles in all journals with MSC: 46A40, 06F20, 46M15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0943603-6

Keywords:
Archimedean -group,
prime subgroup,
cozero set,
Boolean space,

Article copyright:
© Copyright 1990
American Mathematical Society