Epicomplete Archimedean -groups and vector lattices

Authors:
Richard N. Ball and Anthony W. Hager

Journal:
Trans. Amer. Math. Soc. **322** (1990), 459-478

MSC:
Primary 46A40; Secondary 06F20, 46M15

DOI:
https://doi.org/10.1090/S0002-9947-1990-0943603-6

MathSciNet review:
943603

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An object in a category is *epicomplete* provided that the only morphisms out of which are simultaneously epi and mono are the isomorphisms. We characterize the epicomplete objects in the category , whose objects are the archimedean lattice-ordered groups (archimedean -groups) and whose morphisms are the maps preserving both group and lattice structure (-homomorphisms). Recall that a space is *basically disconnected* if the closure of each cozero subset is open.

**Theorem.** *The following are equivalent for* .

(a) *is* *epicomplete*.

(b) *is an* *extremal suboject of* *for some basically disconnected compact Hausdorff space* . *Here* *denotes the continuous extended real-valued functions on* *which are finite on a dense subset*.

(c) *is conditionally and laterally* -*complete* (*meaning each countable subset of positive elements of* *which is either bounded or pairwise disjoint has a supremum*), *and* *is divisible*.

The analysis of rests on an analysis of the closely related category , whose objects are of the form , where and is a *weak unit* (meaning implies for all ), and whose morphisms are the -homomorphism preserving the weak unit.

**Theorem.** *The following are equivalent for* .

(a) *is* *epicomplete*.

(b) *is* *isomorphic to* .

(c) *is conditionally and laterally* -*complete, and* *is divisible*.

**[AC]**Marlow Anderson and Paul Conrad,*Epicomplete 𝑙-groups*, Algebra Universalis**12**(1981), no. 2, 224–241. MR**608666**, https://doi.org/10.1007/BF02483881**[B]**S. J. Bernau,*Orthocompletion of lattice groups*, Proc. London Math. Soc. (3)**16**(1966), 107–130. MR**0188113**, https://doi.org/10.1112/plms/s3-16.1.107**[BH I]**R. N. Ball and A. W. Hager,*Epimorphisms in archimedean*-*groups and vector lattices*, Lattice-Ordered Groups, Advances and Techniques, (A. M. W. Glass and W. Charles Holland, Eds), Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1989.**[BH III]**Richard N. Ball and Anthony W. Hager,*Epicompletion of Archimedean 𝑙-groups and vector lattices with weak unit*, J. Austral. Math. Soc. Ser. A**48**(1990), no. 1, 25–56. MR**1026835****[BH IV]**Richard N. Ball and Anthony W. Hager,*Archimedean kernel distinguishing extensions of Archimedean 𝑙-groups with weak unit*, Indian J. Math.**29**(1987), no. 3, 351–368 (1988). MR**971646****[BH V]**-,*Algebraic extensions and closure of archimedean*-*groups and vector lattices*(in preparation).**[BKW]**Alain Bigard, Klaus Keimel, and Samuel Wolfenstein,*Groupes et anneaux réticulés*, Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin-New York, 1977 (French). MR**0552653****[BL]**Richard D. Byrd and Justin T. Lloyd,*Closed subgroups and complete distributivity in lattice-ordered groups*, Math. Z.**101**(1967), 123–130. MR**0218284**, https://doi.org/10.1007/BF01136029**[C1]**Paul Conrad,*The essential closure of an Archimedean lattice-ordered group*, Duke Math. J.**38**(1971), 151–160. MR**0277457****[C2]**-,*The structure of an*-*group that is determined by its minimal prime subgroups*, Ordered Groups, Lecture Notes in Pure and Appl. Math., Vol. 62, Dekker, New York, 1980.**[GJ]**Leonard Gillman and Meyer Jerison,*Rings of continuous functions*, Springer-Verlag, New York-Heidelberg, 1976. Reprint of the 1960 edition; Graduate Texts in Mathematics, No. 43. MR**0407579****[HR]**Anthony W. Hager and Lewis C. Robertson,*Representing and ringifying a Riesz space*, Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), Academic Press, London, 1977, pp. 411–431. MR**0482728****[HJe]**M. Henriksen and M. Jerison,*The space of minimal prime ideals of a commutative ring*, Trans. Amer. Math. Soc.**115**(1965), 110–130. MR**0194880**, https://doi.org/10.1090/S0002-9947-1965-0194880-9**[HJ]**M. Henriksen and D. G. Johnson,*On the structure of a class of archimedean lattice-ordered algebras.*, Fund. Math.**50**(1961/1962), 73–94. MR**0133698**, https://doi.org/10.4064/fm-50-1-73-94**[HVW]**M. Henriksen, J. Vermeer, and R. G. Woods,*Quasi 𝐹-covers of Tychonoff spaces*, Trans. Amer. Math. Soc.**303**(1987), no. 2, 779–803. MR**902798**, https://doi.org/10.1090/S0002-9947-1987-0902798-0**[HS]**Horst Herrlich and George E. Strecker,*Category theory: an introduction*, Allyn and Bacon Inc., Boston, Mass., 1973. Allyn and Bacon Series in Advanced Mathematics. MR**0349791****[K]**Joseph Kist,*Minimal prime ideals in commutative semigroups*, Proc. London Math. Soc. (3)**13**(1963), 31–50. MR**0143837**, https://doi.org/10.1112/plms/s3-13.1.31**[L]**Robert Lagrange,*Amalgamation and epimorphisms in 𝔪 complete Boolean algebras*, Algebra Universalis**4**(1974), 277–279. MR**0364045**, https://doi.org/10.1007/BF02485738**[LZ]**W. A. J. Luxemburg and A. C. Zaanen,*Riesz spaces. Vol. I*, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1971. North-Holland Mathematical Library. MR**0511676****[MV]**J. J. Madden and J. Vermeer,*Epicomplete archimedean*-*groups via a localic Yosida theorem*J. Pure Appl. Algebra (to appear).**[S]**M. H. Stone,*Boundedness properties in function-lattices*, Canadian J. Math.**1**(1949), 176–186. MR**0029091**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46A40,
06F20,
46M15

Retrieve articles in all journals with MSC: 46A40, 06F20, 46M15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0943603-6

Keywords:
Archimedean -group,
prime subgroup,
cozero set,
Boolean space,

Article copyright:
© Copyright 1990
American Mathematical Society