Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hypersurface variations are maximal. II


Author: James A. Carlson
Journal: Trans. Amer. Math. Soc. 323 (1991), 177-196
MSC: Primary 14C30; Secondary 14D05, 14J15, 32G20
DOI: https://doi.org/10.1090/S0002-9947-1991-0978385-6
MathSciNet review: 978385
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that certain variations of Hodge structure defined by sufficiently ample hypersurfaces are maximal integral manifolds of Griffiths' horizontal distribution.


References [Enhancements On Off] (What's this?)

  • [1] J. A. Carlson, Bounds on the dimension of a variation of Hodge structure, Trans. Amer. Math. Soc. 294 (1986), 45-63; Erratum, ibid 299 (1987), 429.
  • [2] J. A. Carlson and R. Donagi, Hypersurface variations are maximal. II, Invent. Math. 89 (1987), 371-374. MR 894385 (88i:14005)
  • [3] J. A. Carlson, M. L. Green, P. A. Griffiths, and J. Harris, Infinitesimal variations of Hodge structures, Compositio Math. 50 (1983), 109-205. MR 720288 (86e:32026a)
  • [4] J. A. Carlson and P. A. Griffiths, Infinitesimal variations of Hodge structure and the global Torelli problem, Géométrie Algébrique, Angers 1979, Sijthoff & Noordhoof, Alphen an den Rijn, 1980, pp. 51-76. MR 605336 (82h:14006)
  • [5] J. A. Carlson, A. Kasparian, and D. Toledo, Variations of Hodge structure of maximal dimension, Duke Math. J. 58 (1989), 669-694. MR 1016441 (90h:14015)
  • [6] C. Delorme, Espaces projectifs anisotropes, Bull. Soc. Math. France 103 (1975), 203-223. MR 0404277 (53:8080a)
  • [7] I. Dolgacev, Weighted projective varieties, Group Actions and Vector Fields (J. Carrell, ed.), Lecture Notes in Math., vol. 956, Springer-Verlag, pp. 34-71. MR 704986 (85g:14060)
  • [8] R. Donagi, Generic Torelli for projective hypersurfaces, Compositio Math. 50 (1983), 325-353. MR 720291 (85g:14045)
  • [9] R. Donagi and M. L. Green, A new proof of the symmetrizer lemma and a stronger weak Torelli theorem for projective hypersurfaces, J. Differential Geom. 20 (1984), 459-461. MR 788289 (86e:14016)
  • [10] R. Donagi and L. Tu, Generic Torelli for weighted hypersurfaces, Math. Ann. 276 (1987), 399-413. MR 875336 (88a:14038)
  • [11] M. L. Green, The period map for hypersurface sections of high degree of an arbitrary variety, Compositio Math. 55 (1984), 135-156. MR 795711 (87b:32038)
  • [12] -, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), 125-171. MR 739785 (85e:14022)
  • [13] P. Griffiths, Periods of rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-526, 805-865. MR 0233825 (38:2146)
  • [14] D. Lieberman, C. Peters, and R. Wilsker, A theorem of local-Torelli type, Math. Ann. 231 (1977), 39-45. MR 0499326 (58:17225)
  • [15] D. Lieberman and E. Sernesi, Semicontinuity of $ L$-dimension, Math. Ann. 225 (1977), 77-88. MR 0427688 (55:719)
  • [16] C. Peters, The local Torelli theorem, Math. Ann. 217 (1975), 1-16. MR 0441966 (56:357a)
  • [17] J.-P. Serre, Faisceaux algébriques coherents, Ann. of Math. (2) 61 (1955), 197-278. MR 0068874 (16:953c)
  • [18] J. H. M. Steenbrink, Intersection forms for quasi homogeneous singularities, Compositio Math. 34 (1977), 211-223. MR 0453735 (56:11995)
  • [19] Loring Tu, Macaulay's theorem and local Torelli for weighted hypersurfaces, Compositio Math. 60 (1986), 33-44. MR 867954 (87m:14040)
  • [20] S. Usui, The local Torelli theorem for non-singular complete intersections, Japan. J. Math. 2 (1976), 411-418. MR 0450274 (56:8570)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14C30, 14D05, 14J15, 32G20

Retrieve articles in all journals with MSC: 14C30, 14D05, 14J15, 32G20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-0978385-6
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society