Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Theorems of Hardy and Paley for vector-valued analytic functions and related classes of Banach spaces


Authors: O. Blasco and A. Pełczyński
Journal: Trans. Amer. Math. Soc. 323 (1991), 335-367
MSC: Primary 46B20; Secondary 42B30, 46E15, 46L99, 47D15
MathSciNet review: 979957
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the classes of Banach spaces where analogues of the classical Hardy inequality and the Paley gap theorem hold for vector-valued functions. We show that the vector-valued Paley theorem is valid for a large class of Banach spaces (necessarily of cotype $ 2$) which includes all Banach lattices of cotype $ 2$, all Banach spaces whose dual is of type $ 2$ and also the preduals of $ {C^ * }$-algebras. For the trace class $ {S_1}$ and the dual of the algebra of all bounded operators on a Hilbert space a stronger result holds; namely, the vector-valued analogue of the Fefferman theorem on multipliers from $ {H^1}$ into $ {l^1}$; in particular for the latter spaces the vector-valued Hardy inequality holds. This inequality is also true for every Banach space of type $ > 1$ (Bourgain).


References [Enhancements On Off] (What's this?)

  • [B1] J. Bourgain, Vector-valued singular integrals and the $ {H^1}$-BMO duality, Probability Theory and Harmonic Analysis (J.-A. Chao and W. A. Woyczynski, [ill]ds.), Dekker, New York and Basel, 1986, pp. 1-19. MR 830227 (87j:42049b)
  • [B2] -, New Banach space properties of the disc algebra and $ H$, Acta Math. 152 (1984), 1-48. MR 736210 (85j:46091)
  • [B3] -, A Hausdorff-Young inequality for $ B$-convex Banach spaces, Pacific J. Math. 101 (1982), 255-262. MR 675400 (84d:46014)
  • [B4] -, Vector-valued Hausdorff-Young inequality and applications, Geometric Aspects in Functional Analysis, Israel Seminar (GAFA) 1986-1987, Lecture Notes in Math., vol. 1317, Springer-Verlag, pp. 239-249.
  • [B-D] J. Bourgain and W. J. Davis, Martingale transforms and complex uniform convexity, Trans. Amer. Math. Soc. 294 (1986), 501-515. MR 825718 (88d:46062)
  • [Be-Gi-Mu] E. Berkson, T. A. Gillespie, and P. S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. (3) 53 (1986), 489-517. MR 868456 (88e:47036)
  • [Bg-Là] J. Berg and J. Làfstràm, Interpolation spaces. An introduction, Springer-Verlag, Berlin, Heidelberg, and New York, 1976. MR 0482275 (58:2349)
  • [Bo-Dn] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, Berlin and New York, 1973. MR 0423029 (54:11013)
  • [Du] P. L. Duren, Theory of $ {H^p}$ spaces, Academic Press, New York, 1970. MR 0268655 (42:3552)
  • [D-Ga-TJ] W. J. Davis, D. J. H. Garling, and N. Tomczak-Jaegermann, The complex convexity of quasi-normed linear spaces, J. Funct. Anal. 55 (1984), 110-150. MR 733036 (86b:46032)
  • [G-K] I. C. Gohberg and M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monographs, no. 24, Amer. Math. Soc., Providence, R.I., 1970. MR 0264447 (41:9041)
  • [GC-Ru] J. Garcia Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985. MR 807149 (87d:42023)
  • [H] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N.J., 1967. MR 0208368 (34:8178)
  • [Hu-Pi] U. Haagerup and G. Pisier, Factorization of analytic functions with values in non-commutative $ {L_1}$-spaces and applications, Canad. J. Math. (to appear). MR 1015588 (91g:46068)
  • [Kh] J.-P. Kahane, Some random series of functions, Cambridge Univ. Press, Cambridge, 1985. MR 833073 (87m:60119)
  • [L-R] J. Lindenstrauss and H. P. Rosenthal, The $ {\mathcal{L}_p}$ spaces, Israel J. Math. 7 (1969), 325-349. MR 0270119 (42:5012)
  • [L-T] J. Lindenstrauss and L. Tzafriri,Classical Banach spaces. II, Springer-Verlag, New York, 1979. MR 540367 (81c:46001)
  • [M-Pi] B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90. MR 0443015 (56:1388)
  • [MI] M. Milman, Complex interpolation and geometry of Banach spaces, Ann. Mat. Pura Appl. (4) 136 (1984), 317-328. MR 765927 (86g:46024)
  • [Mu] P. S. Muhly, Fefferman spaces and $ {C^ * }$-algebras, Contemp Math., vol. 85, Amer. Math. Soc., Providence, R. I., 1989, pp. 371-385. MR 983395 (90f:46113)
  • [P] A. Pelczynski, On commensurate sequences of characters, Proc. Amer. Math. Soc. 104 (1988), 525-531. MR 962823 (89m:43008)
  • [Pa] R. E. A. C. Paley, On Lacunary coefficients of power series, Ann. of Math. 34 (1936), 615-616. MR 1503129
  • [Pee] J. Peetre, Sur la transformation de Fourier des fonctions à valeurs vectorielles, Rend. Sem. Mat. Univ. Padova 42 (1969), 15-26. MR 0256153 (41:812)
  • [Pi1] G. Pisier, Les inégalités de Khinchine-Kahane d'après C. Borel, Séminaire sur le Géométrie d'Espaces de Banach 1977-1978, Exposé VII, École Polytechnique, Centre de Mathématiques, 1978. MR 520209 (81c:60005)
  • [Pi2] -, Factorization of operator-valued analytic functions, Adv. in Math. (to appear).
  • [R] H. P. Rosenthal, On subspaces of $ {L^p}$, Ann. of Math. (2) 97 (1973), 344-373. MR 0312222 (47:784)
  • [S] D. Sarason, Generalized interpolation in $ {H^\infty}$, Trans. Amer. Math. Soc. 127 (1967), 179-203. MR 0208383 (34:8193)
  • [SM] B. Smith, Two trigonometric designs: One-sided Riesz products and Littlewood products, General Inequalities $ 3$ (E. F. Beckenbach and W. Walter, eds.), Birkhäuser-Verlag, Basel, 1983, pp. 141-148. MR 785771 (86h:42001)
  • [Sz-W] S. J. Szarek and T. Wolniewicz, A proof of Fefferman's theorem on multipliers, Inst. of Math., Polish Acad. Sci., Preprint No. 209, Warzawa, 1980.
  • [TJ] N. Tomczak-Jaegermann, On the moduli of smoothness and the Rademacher averages of the trace classes $ {S_p}(1 \leq p < \infty )$, Studia Math. 50 (1974), 163-182. MR 0355667 (50:8141)
  • [X1] Q. Xu, Inégalités pour les martingales de Hardy et renormage des espaces quasi normés, C. R. Acad. Sci. Paris sér. I Math. 306 (1988), 601-604. MR 941635 (89k:46029)
  • [X2] -, Application du théorème de factorisation pour des fonctions à valeurs opérateurs, Studia Math. (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B20, 42B30, 46E15, 46L99, 47D15

Retrieve articles in all journals with MSC: 46B20, 42B30, 46E15, 46L99, 47D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-0979957-5
Keywords: Hardy inequality, Paley theorem, multipliers, $ X$-atoms, Banach spaces of type $ > 1$, cotype $ 2$
Article copyright: © Copyright 1991 American Mathematical Society