Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

Closed convex hulls of unitary orbits in von Neumann algebras


Authors: Fumio Hiai and Yoshihiro Nakamura
Journal: Trans. Amer. Math. Soc. 323 (1991), 1-38
MSC: Primary 46L10; Secondary 46L35, 46L50
MathSciNet review: 984856
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{M}$ be a von Neumann algebra. The distance $ \operatorname{dist} (x,\operatorname{co} \mathcal{U}(y))$ between $ x$ and $ \operatorname{co} \mathcal{U}(y)$ for selfadjoint operators $ x$, $ y \in \mathcal{M}$ and the distance $ \operatorname{dist} (\varphi ,\operatorname{co} \mathcal{U}(\psi ))$ between $ \varphi$ and $ \operatorname{co} \mathcal{U}(\psi )$ for selfadjoint elements $ \varphi$, $ \psi \in {\mathcal {M}_*}$ are exactly estimated, where $ \operatorname{co} \mathcal{U}(y)$ and $ \operatorname{co} \mathcal{U}(\psi )$ are the convex hulls of the unitary orbits of $ y$ and $ \psi$, respectively. This is done separately in the finite factor case, in the infinite semifinite factor case, and in the type III factor case. Simple formulas of distances between two convex hulls of unitary orbits are also given. When $ \mathcal{M}$ is a von Neumann algebra on a separable Hilbert space, the above cases altogether are combined under the direct integral decomposition of $ \mathcal{M}$ into factors. As a result, it is known that if $ \mathcal{M}$ is $ \sigma$-finite and $ x \in \mathcal{M}$ is selfadjoint, then $ \overline {\operatorname{co} } \mathcal{U}(x) = {\overline {\operatorname{co} } ^{\mathbf{w}}}\mathcal{U}(x)$ where $ \overline {\operatorname{co} } \mathcal{U}(x)$ and $ {\overline {\operatorname{co} } ^{\mathbf{w}}}\mathcal{U}(x)$ are the closures of $ \operatorname{co} \mathcal{U}(x)$ in norm and in the weak operator topology, respectively.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L10, 46L35, 46L50

Retrieve articles in all journals with MSC: 46L10, 46L35, 46L50


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1991-0984856-9
PII: S 0002-9947(1991)0984856-9
Article copyright: © Copyright 1991 American Mathematical Society