Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Closed convex hulls of unitary orbits in von Neumann algebras


Authors: Fumio Hiai and Yoshihiro Nakamura
Journal: Trans. Amer. Math. Soc. 323 (1991), 1-38
MSC: Primary 46L10; Secondary 46L35, 46L50
MathSciNet review: 984856
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{M}$ be a von Neumann algebra. The distance $ \operatorname{dist} (x,\operatorname{co} \mathcal{U}(y))$ between $ x$ and $ \operatorname{co} \mathcal{U}(y)$ for selfadjoint operators $ x$, $ y \in \mathcal{M}$ and the distance $ \operatorname{dist} (\varphi ,\operatorname{co} \mathcal{U}(\psi ))$ between $ \varphi$ and $ \operatorname{co} \mathcal{U}(\psi )$ for selfadjoint elements $ \varphi$, $ \psi \in {\mathcal {M}_*}$ are exactly estimated, where $ \operatorname{co} \mathcal{U}(y)$ and $ \operatorname{co} \mathcal{U}(\psi )$ are the convex hulls of the unitary orbits of $ y$ and $ \psi$, respectively. This is done separately in the finite factor case, in the infinite semifinite factor case, and in the type III factor case. Simple formulas of distances between two convex hulls of unitary orbits are also given. When $ \mathcal{M}$ is a von Neumann algebra on a separable Hilbert space, the above cases altogether are combined under the direct integral decomposition of $ \mathcal{M}$ into factors. As a result, it is known that if $ \mathcal{M}$ is $ \sigma$-finite and $ x \in \mathcal{M}$ is selfadjoint, then $ \overline {\operatorname{co} } \mathcal{U}(x) = {\overline {\operatorname{co} } ^{\mathbf{w}}}\mathcal{U}(x)$ where $ \overline {\operatorname{co} } \mathcal{U}(x)$ and $ {\overline {\operatorname{co} } ^{\mathbf{w}}}\mathcal{U}(x)$ are the closures of $ \operatorname{co} \mathcal{U}(x)$ in norm and in the weak operator topology, respectively.


References [Enhancements On Off] (What's this?)

  • [1] P. M. Alberti and A. Uhlmann, Stochasticity and partial order, VEB Deutscher Verlag Wiss., Berlin, 1982. MR 667518 (84i:46057b)
  • [2] T. Ando, Majorization, doubly stochastic matrices and comparison of eigenvalues, Lecture Notes, Hokkaido Univ., Sapporo, 1982; Linear Algebra Appl. 118 (1989), 163-248. MR 995373 (90g:15034)
  • [3] G. Birkhoff, Tres observaciones sobre el algebra lineal, Univ. Nac. Tucuman Rev. Ser. A 5 (1946), 147-151. MR 0020547 (8:561a)
  • [4] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Math., vol. 580, Springer-Verlag, 1977. MR 0467310 (57:7169)
  • [5] K. M. Chong, Some extensions of a theorem of Hardy, Littlewood and Pólya and their applications, Canad. J. Math. 26 (1974), 1321-1340. MR 0352377 (50:4864)
  • [6] -, Doubly stochastic operators and rearrangement theorems, J. Math. Anal. Appl. 56 (1976), 309-316. MR 0417844 (54:5892)
  • [7] A. Connes, U. Haagerup and E. Størmer, Diameters of state spaces of type III factors, Operator Algebras and their Connections with Topology and Ergodic Theory (H. Araki et al., eds.), Lecture Notes in Math., vol. 1132, Springer-Verlag, 1985, pp. 91-116. MR 799557 (86f:46001)
  • [8] A. Connes and E. Størmer, Homogeneity of the state space of factors of type $ {\text{II}}{{\text{I}}_1}$, J. Funct. Anal. 28 (1978), 187-196. MR 0470689 (57:10435)
  • [9] J. B. Conway, The numerical range and a certain convex set in an infinite factor, J. Funct. Anal. 5 (1970), 428-435. MR 0262839 (41:7444)
  • [10] J. Dixmier, Les anneaux d'opérateurs de classe finie, Ann. Sci. École Norm. Sup. 66 (1949), 209-261. MR 0032940 (11:370c)
  • [11] -, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81 (1953), 9-39. MR 0059485 (15:539a)
  • [12] -, Les algèbres d'opérateurs dans l'espace Hilbertien (algèbres de von Neumann), 2nd ed., Gauthier-Villars, Paris, 1969.
  • [13] T. Fack and H. Kosaki, Generalized $ s$-numbers of $ \tau$-measurable operators, Pacific J. Math. 123 (1986), 269-300. MR 840845 (87h:46122)
  • [14] K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 42-47. MR 0055678 (14:1109f)
  • [15] U. Haagerup, $ {L^p}$-spaces associated with an arbitrary von Neumann algebra, Colloq. Internat. CNRS, no. 274, CNRS, Paris, 1979, pp. 175-184. MR 560633 (81e:46050)
  • [16] P. R. Halmos, A Hilbert space problem book, Springer-Verlag, 1974. MR 675952 (84e:47001)
  • [17] H. Halpern, Essential central spectrum and range for elements of a von Neumann algebra, Pacific J. Math. 43 (1972), 349-380. MR 0324435 (48:2787)
  • [18] F. Hiai, Majorization and stochastic maps in von Neumann algebras, J. Math. Anal. Appl. 127 (1987), 18-48. MR 904208 (88k:46076)
  • [19] -, Spectral relations and unitary mixing in semifinite von Neumann algebras, Hokkaido Math. J. 17 (1988), 117-137. MR 928470 (89k:46070)
  • [20] F. Hiai and Y. Nakamura, Majorizations for generalized $ s$-numbers in semifinite von Neumann algebras, Math. Z. 195 (1987), 17-27. MR 888123 (88g:46070)
  • [21] -, Distance between unitary orbits in von Neumann algebras, Pacific J. Math. 138 (1989), 259-294. MR 996202 (90i:46105)
  • [22] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. MR 0367142 (51:3384)
  • [23] E. Kamei, Double stochasticity in finite factors, Math. Japon. 29 (1984), 903-907. MR 803445 (88a:46067a)
  • [24] -, An order on statistical operators implicitly introduced by von Neumann, Math. Japon. 30 (1985), 891-895. MR 820915 (87k:47048)
  • [25] H. Kosaki, Applications of uniform convexity of noncommutative $ {L^p}$-spaces, Trans. Amer. Math. Soc. 283 (1984), 265-282. MR 735421 (85j:46116)
  • [26] A. S. Markus, The eigen- and singular values of the sum and product of linear operators, Russian Math. Surveys 19 (1964), 91-120. MR 0169063 (29:6318)
  • [27] A. W. Marshall and I. Olkin, Inequalities: Theory of majorization and its applications, Academic Press, 1979. MR 552278 (81b:00002)
  • [28] Y. Nakamura, An inequality for generalized $ s$-numbers, Integral Equations Operator Theory 10 (1987), 140-145. MR 868577 (88f:47016)
  • [29] -, $ {L^p}$-distance between unitary orbits in type III factors, Preprint.
  • [30] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116. MR 0355628 (50:8102)
  • [31] T. Ogasawara and K. Yoshinaga, A non-commutative theory of integration for operators, J. Sci. Hiroshima Univ. 17 (1955), 311-347. MR 0070989 (17:66d)
  • [32] V. I. Ovchinnikov, $ s$-numbers of measurable operators, Functional Anal. Appl. 4 (1970), 236-242. MR 0271763 (42:6644)
  • [33] D. Petz, Spectral scale of self-adjoint operators and trace inequalities, J. Math. Anal. Appl. 109 (1985), 74-82. MR 796042 (87c:47055)
  • [34] J. R. Ringrose, On the Dixmier approximation theorem, Proc. London Math. Soc. (3) 49 (1984), 37-57. MR 743369 (86a:46082)
  • [35] Y. Sakai, Weak spectral order of Hardy, Littlewood and Pólya, J. Math. Anal. Appl. 108 (1985), 31-46. MR 791129 (87k:26026)
  • [36] I. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401-457. MR 0054864 (14:991f)
  • [37] Ş. Strătilă and L. Zsidó, An algebraic reduction theory for $ {W^ * }$-algebras. II, Rev. Roumaine Math. Pures Appl. 18 (1973), 407-460. MR 0348514 (50:1012)
  • [38] M. Takesaki, Theory of operator algebras I, Springer-Verlag, 1979. MR 548728 (81e:46038)
  • [39] M. Terp, $ {L^p}$-spaces associated with von Neumann algebras, Notes, Copenhagen Univ., 1981.
  • [40] R. C. Thompson, Singular values, diagonal elements, and convexity, SIAM J. Appl. Math. 32 (1977), 39-63. MR 0424847 (54:12805)
  • [41] H. Umegaki, Conditional expectation in an operator algebra. I, II, III, IV, Tôhoku Math. J. 6 (1954), 177-181; ibid. 8 (1956), 86-100; Kōdai Math. Sem. Rep. 11 (1959), 51-64; ibid. 14 (1962), 59-85. MR 0068751 (16:936b)
  • [42] F. J. Yeadon, Non-commutative $ {L^p}$-spaces, Math. Proc. Cambridge Philos. Soc. 77 (1975), 91-102. MR 0353008 (50:5494)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L10, 46L35, 46L50

Retrieve articles in all journals with MSC: 46L10, 46L35, 46L50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-0984856-9
Article copyright: © Copyright 1991 American Mathematical Society