Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Circuit partitions and the homfly polynomial of closed braids


Author: François Jaeger
Journal: Trans. Amer. Math. Soc. 323 (1991), 449-463
MSC: Primary 57M25; Secondary 57M15
MathSciNet review: 986693
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present an expansion of the homfly polynomial $ P(D,z,a)$ of a braid diagram $ D$ in terms of its circuit partitions. Another aspect of this result is an expression of $ P(D,z,a)$ as the trace of a matrix associated to $ D$ in a simple way. We show how certain degree properties of the homfly polynomial can be derived easily from this model. In particular we obtain that if $ D$ is a positive braid diagram on $ n$ strings with $ w$ crossings, the maximum degree of $ P(D,z,a)$ in the variable $ a$ equals $ n - 1 - w$.

Nous présentons une expansion pour le polynôme homfly $ P(D,z,a)$ d'un diagramme de tresse $ D$ en termes de ses partitions en circuits. Un autre aspect de ce résultat consiste en une expression de $ P(D,z,a)$ comme trace d'une matrice associee de façon simple à $ D$. Nous montrons comment certaines propriétés de degré du polynôme homfly dérivent simplement de ce modèle. En particulier nous obtenons que pour un diagramme de tresse positif $ D$ à $ n$ brins et $ w$ croisements, le degré maximum de $ P(D,z,a)$ en la variable $ a$ est égal à $ n - 1- w$.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275-306. MR 1501429
  • [2] C. Berge, Graphes et hypergraphes, Dunod, Paris, 1974. MR 0357171 (50:9639)
  • [3] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Macmillan, London, 1976. MR 0411988 (54:117)
  • [4] G. Burde and H. Zieschang, Knots, De Gruyter, Berlin and New York, 1985. MR 808776 (87b:57004)
  • [5] J. H. Conway, An enumeration of knots and links and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon, New York, 1970, pp. 329-358. MR 0258014 (41:2661)
  • [6] J. Franks and R. F. Williams, Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303 (1987), 97-108. MR 896009 (88k:57006)
  • [7] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-246. MR 776477 (86e:57007)
  • [8] P. de la Harpe, M. Kervaire, and C. Weber, On the Jones polynomial, Enseign. Math. 32 (2) (1986), 271-235. MR 874691 (88f:57004)
  • [9] J. Hoste, A polynomial invariant of knots and links, Pacific J. Math. 124 (1986), 295-320. MR 856165 (88d:57004)
  • [10] F. Jaeger, Composition products and models for the homfly polynomial, Enseign. Math. 32 (1989), 323-361. MR 1039950 (91a:57003)
  • [11] -, A combinatorial model for the homfly polynomial, Europ. J. Combinatorics (to appear). MR 1078711 (92e:57008a)
  • [12] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388. MR 908150 (89c:46092)
  • [13] -, Notes on a talk in Atiyah's seminar, November 1986.
  • [14] L. H. Kauffman, Formal knot theory, Math. Notes, no. 30, Princeton Univ. Press, 1983. MR 712133 (85b:57006)
  • [15] -, State models and the Jones polynomial, Topology 26 (1987), 395-407. MR 899057 (88f:57006)
  • [16] -, State models for knot polynomials--An introduction, Proc. 1987 Winter Meeting of the Brasilian Mathematical Society.
  • [17] -, Knots, abstract tensors and the Yang-Baxter equation, preprint.
  • [18] W. B. R. Lickorish and K. Millett. A polynomial invariant of oriented links, Topology 26 (1987), 107-141. MR 880512 (88b:57012)
  • [19] H. R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), 107-109. MR 809504 (87c:57006)
  • [20] H. R. Morton and H. B. Short, The $ 2$-variable polynomial of cable knots, Math. Proc. Cambridge Philos. Soc. 101 (1987), 267-278. MR 870598 (88f:57009)
  • [21] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), 187-194. MR 895570 (88m:57010)
  • [22] J. H. Przytycki and P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1987), 115-139. MR 945888 (89h:57006)
  • [23] M. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), 297-309. MR 899051 (88h:57007)
  • [24] V. G. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), 527-553. MR 939474 (89e:57003)
  • [25] P. Vogel, Représentations et traces des algèbres de Hecke, polynôme de Jones-Conway, Enseign. Math. 34 (1988), 333-356. MR 979646 (90e:57017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M25, 57M15

Retrieve articles in all journals with MSC: 57M25, 57M15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1991-0986693-8
Keywords: Links, braids, diagrams, graphs, polynomial invariants, combinatorial models, transfer matrices
Article copyright: © Copyright 1991 American Mathematical Society