Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On collectionwise normality of locally compact, normal spaces


Author: Zoltán T. Balogh
Journal: Trans. Amer. Math. Soc. 323 (1991), 389-411
MSC: Primary 54D15; Secondary 03E35, 03E55, 54A35, 54D45
MathSciNet review: 989571
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that by adjoining supercompact many Cohen or random reals to a model of ZFC set theory, in the resulting model, every normal locally compact space is collectionwise normal. In the same models, countably paracompact, locally compact $ {T_3}$-spaces are expandable. Local compactness in the above theorems can be weakened to being of point-countable type, a condition that is implied by both Čech-completeness and first countability.


References [Enhancements On Off] (What's this?)

  • [A$ _{1}$] A. V. Arhangel'skiĭ, The Suslin number and cardinality. Characters of points in sequential bicompacta, Dokl. Akad. Nauk SSSR 192 (1970), 597-601. MR 0263002 (41:7607)
  • [A$ _{2}$] -, The property of paracompactness in the class of perfectly normal, locally bicompact spaces, Dokl. Akad. Nauk SSSR 203 (1972), 517-520. MR 0305342 (46:4472)
  • [AZ] K. Alster and P. Zenor, On the collectionwise normality of generalized manifolds, Topology Proc. 1 (1976), 125-127. MR 0451199 (56:9486)
  • [B$ _{1}$] Z. Balogh, Paracompactness in locally Lindelàf spaces, Canad. J. Math. 38 (1986), 719-727. MR 845674 (88b:54018)
  • [B$ _{2}$] -, Locally compact, countably paracompact spaces in the constructible universe, Topology Appl. 29 (1988), 19-26. MR 964059 (89m:54030)
  • [Bu] D. K. Burke, PMEA and first countable, countably paracompact spaces, Proc. Amer. Math. Soc. 92 (1984), 455-460. MR 759673 (85h:54032)
  • [CZ] J. Chaber and P. Zenor, On perfect subparacompactness and a metrization theorem for Moore spaces, Topology Proc. 2 (1977), 401-407. MR 540618 (82i:54040)
  • [D$ _{1}$] P. Daniels, Normal, locally compact, boundedly metacompact spaces are paracompact: an application of Pixley-Roy spaces, Canad. J. Math. 35 (1983), 807-823. MR 735898 (86b:54017)
  • [D$ _{2}$] -, On collectionwise Hausdorffness in countably paracompact, locally compact spaces, preprint.
  • [D$ _{3}$] -, When countably paracompact, locally compact, screenable spaces are paracompact, Topology Appl. 28 (1988), 113-125. MR 932976 (89m:54031)
  • [DG] P. Daniels and G. Gruenhage, A perfectly normal, locally compact, non-collectionwise normal space from $ {\diamond ^ * }$, Proc. Amer. Math. Soc. 95 (1985), 115-118. MR 796458 (86m:54021)
  • [Do$ _{1}$] A. Dow, Remote points in large products, Topology Appl. 16 (1983), 11-17. MR 702616 (85d:54027)
  • [Do$ _{2}$] -, Some linked subsets of posets, Israel J. Math. 59 (1987), 353-376. MR 920500 (88m:03073)
  • [DS] K. Devlin and S. Shelah, A note on the normal Moore space conjecture, Canad. J. Math. 31 (1979), 241-251. MR 528801 (81d:54022)
  • [DTW] A. Dow, F. Tall, and W. Weiss, New proofs of the consistency of the normal Moore space conjecture (revised), preprint.
  • [F$ _{1}$] W. G. Fleissner, Normal Moore spaces in the constructible universe, Proc. Amer. Math. Soc. 46 (1974), 294-298. MR 0362240 (50:14682)
  • [F$ _{2}$] -, When is Jones' space normal?, Proc. Amer. Math. Soc. 50 (1975), 375-378. MR 0394583 (52:15384)
  • [F$ _{3}$] -, If all normal Moore spaces are metrizable, then there is an inner model with a measurable cardinal, Trans. Amer. Math. Soc. 273 (1982), 365-373. MR 664048 (84h:03118)
  • [F$ _{4}$] -, Discrete sets of singular cardinality, Proc. Amer. Math. Soc. 88 (1983), 743-745. MR 702311 (84i:54023)
  • [F$ _{5}$] -, The normal Moore space conjecture and large cardinals, Handbook of Set-Theoretic Topology, North-Holland, 1984, pp. 733-760. MR 776635 (86m:54023)
  • [F$ _{6}$] -, Homomorphism axioms and lynxes, Contemp. Math. 31 (1984), 79-97. MR 763895 (86k:03044)
  • [F$ _{7}$] -, Burke's theorem from the product category extension axiom, Topology Proc. 10 (1985), 55-57. MR 851200 (88f:54044)
  • [F$ _{8}$] -, Left-separated spaces with point-countable bases, Trans. Amer. Math. Soc. 294 (1986), 665-674. MR 825729 (87d:03134)
  • [Fr] D. Fremlin, handwritten notes.
  • [G$ _{1}$] G. Gruenhage, Paracompactness in normal, locally connected, locally compact spaces, Topology Proc. 4 (1979), 393-405. MR 598283 (82b:54033)
  • [G$ _{2}$] -, Two normal locally compact spaces under Martin's axiom, Topology Proc. 9 (1984), 297-305. MR 828986 (87k:54039)
  • [K$ _{1}$] K. Kunen, Set theory (an introduction to independence proofs), North-Holland, 1980. MR 597342 (82f:03001)
  • [K$ _{2}$] -, Random and Cohen reals, Handbook of Set-Theoretic Topology, North-Holland, 1984, pp. 887-911. MR 776639 (86d:03049)
  • [KM] A. Kanamori and M. Magidor, The evolution of large cardinal axioms in set theory, Proc. Conf. on Higher Set Theory, Lecture Notes in Math., vol. 669, Springer-Verlag, Berlin, 1978, pp. 99-275. MR 520190 (80b:03083)
  • [KV] K. Kunen and J. E. Vaughan, editors, Handbook of set-theoretic topology, North-Holland, 1984. MR 776619 (85k:54001)
  • [L] D. J. Lane, Paracompactness in perfectly normal, locally connected, locally compact spaces, Proc. Amer. Math. Soc. 80 (1980), 693-696. MR 587957 (82a:54031)
  • [N$ _{1}$] P. Nyikos, A provisional solution to the normal Moore space problem, Proc. Amer. Math. Soc. 78 (1980), 429-435. MR 553389 (81k:54044)
  • [N$ _{2}$] -, The normal Moore space problem, Topology Proc. 3 (1978), 473-493. MR 540507 (80k:54051)
  • [R] M. E. Rudin, The undecidability of the existence of a perfectly normal manifold, Houston J. Math. 5 (1979), 249-252. MR 546759 (80j:54014)
  • [RZ] G. M. Reed and P. Zenor, Metrization of Moore spaces and generalized manifolds, Fund. Math. 91 (1976), 203-210. MR 0425918 (54:13868)
  • [S] S. Shelah, Remarks on $ \lambda$-collectionwise Hausdorff spaces, Topology Proc. 2 (1977), 583-592. MR 540629 (81f:03060)
  • [T$ _{1}$] F. D. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Thesis, 1969, Dissertationes Math. 148 (1977), 1-53. MR 0454913 (56:13156)
  • [T$ _{2}$] -, Collectionwise normality without large cardinals, Proc. Amer. Math. Soc. 85 (1982), 100-102. MR 647907 (83e:54017)
  • [T$ _{3}$] -, Normality versus collectionwise normality, Handbook of Set-Theoretic Topology, North-Holland, 1984, pp. 685-732. MR 776634 (86m:54022)
  • [T$ _{4}$] -, Countably paracompact Moore spaces are metrizable in the Cohen model, Topology Proc. 9 (1984), 145-148. MR 781557 (86k:54011)
  • [T$ _{5}$] -, Corrigendum to "Countably paracompact Moore spaces are metrizable in the Cohen model", Topology Proc. 10 (1985), 175-176. MR 851210 (87g:54009)
  • [T$ _{6}$] -, Covering and separation properties in the Easton model, Topology Appl. 28 (1988), 155-164. MR 932980 (89e:54008)
  • [T$ _{7}$] -, A note on collectionwise normality of locally compact normal spaces, Topology Appl. 28 (1988), 165-170. MR 932981 (89c:54046)
  • [T$ _{8}$] -, Are locally compact normal spaces collectionwise normal?, Questions and Answers in Topology 2 (1984), 77-82. MR 776569
  • [T$ _{9}$] -, On the collectionwise normality of locally compact normal spaces, preprint.
  • [Sm] J. C. Smith, On $ \theta$-expandable spaces, Glasnik Mat. 11 (31) (1976), 335-346. MR 0438297 (55:11215)
  • [SmK] J. C. Smith and L. Krajewski, Expandability and collectionwise normality, Trans. Amer. Math. Soc. 160 (1971), 437-451. MR 0284966 (44:2190)
  • [W$ _{1}$] S. Watson, Locally compact normal spaces in the constructible universe, Canad. J. Math. 34 (1982), 1091-1096. MR 675681 (83k:54021)
  • [W$ _{2}$] -, Separation in countably paracompact spaces, Trans. Amer. Math. Soc. 290 (1985), 831-842. MR 792831 (87b:54016)
  • [W$ _{3}$] -, Locally compact normal metalindelàf spaces may not be paracompact: an application of uniformization and Suslin lines, Proc. Amer. Math. Soc. 98 (1986), 676-680. MR 861774 (88d:54025)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54D15, 03E35, 03E55, 54A35, 54D45

Retrieve articles in all journals with MSC: 54D15, 03E35, 03E55, 54A35, 54D45


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1991-0989571-3
Keywords: Random and Cohen reals, forcing, supercompact cardinals, locally compact, collectionwise normal, normal Moore space conjecture, countably paracompact
Article copyright: © Copyright 1991 American Mathematical Society