Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Finite group actions on the moduli space of self-dual connections. I


Author: Yong Seung Cho
Journal: Trans. Amer. Math. Soc. 323 (1991), 233-261
MSC: Primary 58D15; Secondary 53C05, 57S17, 58B20, 58G10
MathSciNet review: 1010409
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a smooth simply connected closed $ 4$-manifold with positive definite intersection form. Suppose a finite group $ G$ acts smoothly on $ M$. Let $ \pi :E \to M$ be the instanton number one quaternion line bundle over $ M$ with a smooth $ G$-action such that $ \pi$ is an equivariant map. We first show that there exists a Baire set in the $ G$-invariant metrics on $ M$ such that the moduli space $ \mathcal{M}_ * ^G$ of $ G$-invariant irreducible self-dual connections is a manifold. By utilizing the $ G$-transversality theory of T. Petrie, we then identify cohomology obstructions to globally perturbing the full space $ {\mathcal{M}_ * }$ of irreducible self-dual connections to a $ G$-manifold when $ G = {{\mathbf{Z}}_2}$ and the fixed point set of the $ {\mathbf{Z}}_2$ action on $ M$ is a nonempty collection of isolated points and Riemann surfaces.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, N. Hitchin, and I. Singer, Self duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461. MR 506229 (80d:53023)
  • [2] M. F. Atiyah and G. B. Segal, The index of elliptic operators. II, Ann. of Math. (2) 87 (1968), 531-545. MR 0236951 (38:5244)
  • [3] M. F. Atiyah and I. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604. MR 0236952 (38:5245)
  • [4] -, The index of elliptic operators. IV, V, Ann. of Math. (2) 93 (1971), 119-149. MR 0279833 (43:5554)
  • [5] J. P. Bourguignon and H. B. Lawson, Jr., Stability and isolation phenomena for Yang-Mills theory, Comm. Math. Phys. 79 (1982), 189-230.
  • [6] -, Yang-Mills theory, its physical origins and differential geometric aspects, Ann. of Math. Studies, no. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 395-421. MR 645750 (83d:53035)
  • [7] Y. S. Cho, Finite group actions on the moduli space of self-dual connections. II, Michigan Math. J. 37 (1990). MR 1042518 (91h:58016)
  • [8] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam, 1975. MR 0458335 (56:16538)
  • [9] S. Donaldson, An application of gauge theory to four-manifold theory, J. Differential Geom. 18 (1983), 279-315. MR 710056 (85c:57015)
  • [10] -, Connections, cohomology and the intersection forms of $ 4$-manifolds, J. Differential Geom. 24 (1986), 275-341. MR 868974 (88g:57033)
  • [11] R. Fintushel and R. Stern, $ {\text{SO}}(3)$-connections of topology of $ 4$-manifold, J. Differential Geom. 20 (1984), 523-539. MR 788294 (86k:57014)
  • [12] -, Pseudofree orbifolds, Ann. of Math. (2) 122 (1985), 335-364. MR 808222 (87a:57027)
  • [13] -, Definite $ 4$-manifold, J. Differential Geom. 28 (1988), 133-142.
  • [14] D. Freed and K. Uhlenbeck, Instantons and four-manifolds, Math. Sci. Res. Inst. Publ., vol. 1, Springer-Verlag, New York, 1984. MR 757358 (86c:57031)
  • [15] M. Freedman, The topology of four dimensional manifolds, J. Differential Geom. 17 (1983), 357-454. MR 679066 (84b:57006)
  • [16] I. Hambleton and R. Lee, Finite group actions on $ {\mathbf{C}}{P^2}$, preprint.
  • [17] F. Hirzebruch, Topological methods in algebraic geometry, 3rd ed., Springer-Verlag, New York, 1978. MR 1335917 (96c:57002)
  • [18] N. H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19-30. MR 0179792 (31:4034)
  • [19] B. Lawson, Jr., The theory of gauge fields in four dimensions, CBMS Regional Conf. Ser. Math., no. 58, Amer. Math. Soc., Providence, R.I., 1985. MR 799712 (87d:58044)
  • [20] J. Milnor and J. Stasheff, Characteristic classes, Princeton Univ. Press, Princeton, N.J., 1974. MR 0440554 (55:13428)
  • [21] T. Parker, Gauge theories on four dimensional Riemannian manifolds, Comm. Math. Phys. 85 (1982), 1-40. MR 677998 (84b:58036)
  • [22] T. Petrie, Pseudo equivalence of $ G$-manifolds, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R.I., 1978, pp. 169-210. MR 520505 (80e:57039)
  • [23] T. Petrie and J. Randall, Transformation groups on manifolds, Pure Appl. Math. 82 (1984). MR 748850 (85m:57026)
  • [24] P. Shanahan, The Atiyah-Singer index theorem, Lecture Notes in Math., vol 638, Springer-Verlag, 1970.
  • [25] I. Singer, Some remarks on the Gribov ambiguity, Comm. Math. Phys. 60 (1978), 7-12. MR 500248 (80d:53025)
  • [26] I. Singer and J. Thorpe, The curvature of $ 4$-dimensional Einstein spaces, Global Analysis, Princeton Univ. Press, Princeton, N.J., 1969, pp. 335-365. MR 0256303 (41:959)
  • [27] S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1968), 861-866. MR 0185604 (32:3067)
  • [28] N. Steenrod, The topology of fiber bundles, Princeton Univ. Press, Princeton, N.J., 1951. MR 0039258 (12:522b)
  • [29] R. Stern, Instantons and the topology of $ 4$-manifolds, Math. Intelligencer 5 (1983), 39-44. MR 737689 (85d:57011)
  • [30] C. Taubes, Self-dual connections on non-self-dual $ 4$-manifolds, J. Differential Geom. 17 (1982), 139-170. MR 658473 (83i:53055)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58D15, 53C05, 57S17, 58B20, 58G10

Retrieve articles in all journals with MSC: 58D15, 53C05, 57S17, 58B20, 58G10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1991-1010409-2
Keywords: Group action, self-dual connection, moduli space, generic metric, Atiyah-Singer $ G$-index, obstruction class, $ G$-equivariant perturbation
Article copyright: © Copyright 1991 American Mathematical Society