Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Pureté, rigidité, et morphismes entiers


Author: Gabriel Picavet
Journal: Trans. Amer. Math. Soc. 323 (1991), 283-313
MSC: Primary 14E40; Secondary 13B20, 13F05, 14A15
DOI: https://doi.org/10.1090/S0002-9947-1991-1013336-X
MathSciNet review: 1013336
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Bousfield and Kan have shown that a ring morphism with domain $ {\mathbf{Z}}$ is rigid; we say that a ring morphism is rigid if it admits a factorization by an epimorphism, followed by a pure morphism. A ring $ A$ is said to be rigid if every morphism with domain $ A$ is a rigid one. Our principal results are: the rigid domains are the Prüferian rings $ A$, with $ \operatorname{Dim} (A) \leq 1$, and the Noetherian rigid rings are the Z.P.I. rings. The quasi-compact open sets of an affine rigid scheme, having as underlying ring a domain or a Noetherian ring, are affine and schematically dense if they contain the assassin of the ring. Every injective integral ring morphism with rigid domain is a pure morphism. We give two criteria of purity for integral injective morphisms. As a consequence of these results we obtain the following properties: if $ A$ is a normal ring, containing the field of rationals, or is a regular ring, containing a field, every injective integral morphism with domain $ A$ is a pure one. For a reduced ring, we define the category of reduced modules and show that any injective integral morphism is pure with respect to the category of the reduced modules.


References [Enhancements On Off] (What's this?)

  • [1] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-Verlag, New York, Heidelberg, and Berlin, 1973. MR 1245487 (94i:16001)
  • [2] N. Bourbaki, Algèbre commutative, Hermann, Paris.
  • [3] A. K. Bousfield and D. M. Kan, The core of a ring, J. Pure Appl. Algebra 2 (1972), 73-81. MR 0308107 (46:7222)
  • [4] J. W. Brewer, J. W. Bunce, and F. S. Van Vleck, Linear systems over commutative rings, Lecture Notes in Pure and Appl. Math., no. 104, Dekker, Basel and New York, 1986. MR 839186 (87i:93002)
  • [5] J. W. Brewer and E. A. Rutter, Descent for flatness, J. Algebra 22 (1972), 88-96. MR 0299600 (45:8648)
  • [6] P. M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc. 64 (1968), 251-264. MR 0222065 (36:5117)
  • [7] R. Gilmer, Multiplicative ideal theory, Dekker, New York, 1972. MR 0427289 (55:323)
  • [8] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique. I, II, III, IV, Presses Univ. France, Paris (Inst. Hautes Etudes Sci. Publ. Math. Nos. 4, 8, 11, 17, 20, 24, 28, 32) 1960, 1967.
  • [9] L. Gruson and M. Raynaud, Critères de platitude et projectivité, Invent. Math. 13 (1971), 1-89. MR 0308104 (46:7219)
  • [10] M. Hacque, Localisations et schémas affines, Publications du Département de Mathématiques de l'Université C. Bernard. Lyon, no. 7, pp. 1-114. MR 0299650 (45:8698)
  • [11] M. Hochster, Totally integrally closed rings and extremal spaces, Pacific J. Math. 32 (1960), 767-779. MR 0257064 (41:1718)
  • [12] -, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25-43. MR 0349656 (50:2149)
  • [13] I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464-491. MR 0031470 (11:155b)
  • [14] G. B. Klatt and L. S. Levy, Pre-self-injective rings, Trans. Amer. Math. Soc. 137 (1969), 407-419. MR 0236165 (38:4463)
  • [15] M. D. Larsen and P. J. McCarthy, Multiplicative theory of ideals, Academic Press, London and New York, 1971. MR 0414528 (54:2629)
  • [16] D. Lazard, Epimorphismes plats, Séminaire P. Samuel 4, Secrétariat Math., Paris, 1967, 1968.
  • [17] D. Lazard and P. Huet, Dominions des anneaux commutatifs, Bull. Sci. Math. 94 (1970), 193-199. MR 0271097 (42:5980)
  • [18] J. Merker, Idéaux faiblement associés, Bull. Sci. Math. 93 (1969), 15-21. MR 0246863 (40:132)
  • [19] D. Mumford, Introduction to algebraic geometry, Preliminary version.
  • [20] J. P. Olivier, Descente de quelques propriétés élémentaires par morphismes purs, Université des Sciences et Techniques du Languedoc, Publ. No. 112, Montpellier, 1970, 1971, pp. 47-85. MR 0340242 (49:4997)
  • [21] -, Anneaux absolument plats et épimorphismes à buts réduits, Séminaire P. Samuel 6, Secrétariat Math., Paris, 1967, 1968.
  • [22] G. Picavet, Submersion et descente, J. Algebra 103 (1986), 527-591. MR 864429 (88m:14010)
  • [23] -, Propriétés et applications de la notion de contenu, Comm. Algebra 13 (1985), 2231-2265. MR 801439 (87g:13009)
  • [24] -, Factorisations de morphismes d'anneaux commutatifs, Ann. Sci. Univ. B. Pascal (Clermont-Ferrand II) Math. 24 (1987), 33-59.
  • [25] D. Popescu, Algebraically pure morphisms, Rev. Roumaine Math. Pures Appl. 24 (1979), 947-977. MR 546539 (80j:13017)
  • [26] M. Raynaud, Un critère d'effectivité de descente, Séminaire P. Samuel 5, Secrétariat Math., Paris, 1967, 1968. MR 0236164 (38:4462)
  • [27] N. Roby, Diverses caractérisations des épimorphismes, Séminaire P. Samuel 3, Secrétariat Math., Paris, 1967, 1968.
  • [28] D. Sanders, The dominion and separable subalgebras of finitely generated algebras, Proc. Amer. Math. Soc. 48 (1975), 1-7. MR 0364331 (51:586)
  • [29] H. Seydi, Un théorème de descente effective et applications, C. R. Acad. Sci. Paris Ser. A 270 (1970), 801-803. MR 0268174 (42:3073)
  • [30] H. H. Storrer, Epimorphic extensions of non commutative rings, Comment. Math. Helv. 48 (1973), 72-86. MR 0321977 (48:342)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14E40, 13B20, 13F05, 14A15

Retrieve articles in all journals with MSC: 14E40, 13B20, 13F05, 14A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1013336-X
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society