Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

A discrete approach to monotonicity of zeros of orthogonal polynomials


Authors: Mourad E. H. Ismail and Martin E. Muldoon
Journal: Trans. Amer. Math. Soc. 323 (1991), 65-78
MSC: Primary 33C50; Secondary 15A42
MathSciNet review: 1014251
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the monotonicity with respect to a parameter of zeros of orthogonal polynomials. Our method uses the tridiagonal (Jacobi) matrices arising from the three-term recurrence relation for the polynomials. We obtain new results on monotonicity of zeros of associated Laguerre, Al-Salam-Carlitz, Meixner and Pollaczek polynomials. We also derive inequalities for the zeros of the Al-Salam-Carlitz and Meixner polynomials.


References [Enhancements On Off] (What's this?)

  • [1] R. Askey, private communication.
  • [2] R. Askey and M. E. H. Ismail, Recurrence relations, continued fractions and orthogonal polynomials, Mem. Amer. Math. Soc. No. 300 (1984). MR 743545 (85g:33008)
  • [3] R. Askey and J. Wimp, Associated Laguerre and Hermite polynomials, Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), 15-37. MR 741641 (85f:33014)
  • [4] F. V. Atkinson, Discrete and continuous boundary value problems, Academic Press, New York, 1964. MR 0176141 (31:416)
  • [5] T. S. Chihara, Chain sequences and orthogonal polynomials, Trans. Amer. Math. Soc. 104 (1962), 1-16. MR 0138933 (25:2373)
  • [6] -, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978. MR 0481884 (58:1979)
  • [7] A. Erdélyi et al., Higher transcendental functions, vol. 1, McGraw-Hill, New York, 1953.
  • [8] -, Higher transcendental functions, vol. 2, McGraw-Hill, New York, 1954.
  • [9] G. Freud, Orthogonal polynomials, English transl., Pergamon Press, New York, 1971.
  • [10] W. Hahn, Über Orthogonalpolynome mit drei Parameteren, Deutsche Math. 5 (1940-41), 373-378. MR 0013467 (7:157f)
  • [11] R. Horn and C. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985. MR 832183 (87e:15001)
  • [12] M. E. H. Ismail, The variation of zeros of certain orthogonal polynomials, Adv. Appl. Math. 8 (1987), 111-118. MR 876957 (88a:33022)
  • [13] -, Monotonicity of zeros of orthogonal polynomials, in $ q$-Series and Partitions (D. Stanton, ed.), IMA Vol. Math. Appl., vol. 18, Springer-Verlag, New York, 1989, pp. 177-190. MR 1019851 (90j:33009)
  • [14] M. E. H. Ismail, J. Letessier, D. R. Masson, and G. Valent, Birth and death processes and orthogonal polynomials, Orthogonal Polynomials: Theory and Practice (P. Nevai, ed.), NATO ASI Series, Kluwer Academic Publishers, Dordrecht, Boston, and London, 1990, pp. 229-255. MR 1100296 (93c:42021)
  • [15] M. E. H. Ismail, J. Letessier, and G. Valent, Linear birth and death models and associated Laguerre polynomials, J. Approx. Theory 56 (1988), 337-348. MR 968940 (89m:60204)
  • [16] M. E. H. Ismail, D. Stanton, and D. White, The combinatorics of Charlier polynomials (to appear).
  • [17] M. E. H. Ismail and R. Zhang, On the Hellmann-Feynman theorem and the variation of zeros of certain special functions, Adv. Appl. Math. 9 (1988), 439-446. MR 968677 (89i:81150)
  • [18] A. Laforgia and M. E. Muldoon, Some consequences of the Sturm comparison theorem, Amer. Math. Monthly 93 (1986), 89-94. MR 827581 (87c:34050)
  • [19] L. Lorch, Elementary comparison techniques for certain classes of Sturm-Liouville equations, Differential Equations (G. Berg, M. Essén, and Å. Pleijel, eds.), Proc. Conf. Uppsala, 1977, Almqvist and Wiksell, Stockholm, 1977, pp. 125-133. MR 0492536 (58:11644)
  • [20] A. W. Marshall and I. Olkin, Inequalities: Theory of majorization and its applications, Academic Press, New York, 1979. MR 552278 (81b:00002)
  • [21] G. Szegà, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, 4th ed., Amer. Math. Soc.,, Providence, R.I., 1975.
  • [22] H. S. Wall, Continued fractions, Van Nostrand, New York, 1948; reprinted, Chelsea, New York, 1967. MR 0025596 (10:32d)
  • [23] H. S. Wall and M. Wetzel, Quadratic forms and convergence regions for continued fractions, Duke Math. J. 11 (1944), 373-397. MR 0011340 (6:151b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 33C50, 15A42

Retrieve articles in all journals with MSC: 33C50, 15A42


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1991-1014251-8
Keywords: Orthogonal polynomials, zeros, monotonicity, recurrence relations, Jacobi matrices
Article copyright: © Copyright 1991 American Mathematical Society