MICROLOCAL HOLMGREN'S THEOREM FOR A CLASS OF HYPO-ANALYTIC STRUCTURES

S. BERHANU

ABSTRACT. A microlocal version of Holmgren's Theorem is proved for a certain class of the hypo-analytic structures of Baouendi, Chang, and Treves.

1. INTRODUCTION

In [4] Sjöstrand gave a simpler proof of a result of Schapira [3] concerning a microlocal version of Holmgren's theorem for real analytic data. Inspired by [4], in this paper we will extend Schapira's result to a certain class of hypo-analytic structures. The paper is organized as follows: In §2 we discuss the Cauchy-Kovalevskva theorem for maximal hypo-analytic structures. In §3 we introduce a class of hypo-analytic structures which we call real hypo-analytic, give a statement of the main theorem of this article, and derive two corollaries. A lemma is included in the same section and is used in the proof of the main theorem which appears in §4.

2. CAUCHY-KOVALEVSKA FOR HYPO-ANALYTIC STRUCTURES

We are interested in the hypo-analytic structures introduced by Baouendi, Chang, and Treves in [1]. We briefly recall the relevant concepts here.

Let Ω be a smooth manifold of dimension m. A hypo-analytic structure of maximal dimension on Ω is the data of an open covering $\{U_\alpha\}$ of Ω and for each index α, of m C^∞ functions $Z_\alpha^1, \ldots, Z_\alpha^m$ satisfying the following two conditions:

1. $dZ_\alpha^1, \ldots, dZ_\alpha^m$ are linearly independent at each point of U_α;
2. if $U_\alpha \cap U_\beta \neq \emptyset$, there are open neighborhoods O_α of $Z_\alpha(U_\alpha \cap U_\beta)$ and O_β of $Z_\beta(U_\alpha \cap U_\beta)$ and a holomorphic map F_β^α of O_α onto O_β such that $Z_\beta = F_\beta^\alpha \circ Z_\alpha$ on $U_\alpha \cap U_\beta$.

We will use the notation $Z_\alpha = (Z_\alpha^1, \ldots, Z_\alpha^m): U_\alpha \mapsto C^m$. A distribution h defined in an open neighborhood of a point p_0 of Ω is hypo-analytic at p_0 if there is a chart (U_α, Z_α) of the above type whose domain contains p_0 and a
holomorphic function \(\tilde{h} \) defined on an open neighborhood of \(Z_\alpha(p_0) \) in \(C^m \) such that \(h = \tilde{h} \circ Z_\alpha \) in a neighborhood of \(p_0 \). By a hypo-analytic local chart we mean an \(m+1 \)-tuple \((U, Z^1, \ldots, Z^m)\) [abbreviated \((U, Z)\)] consisting of an open subset \(U \) of \(\Omega \) and of \(m \) hypo-analytic functions whose differentials are linearly independent at every point of \(U \).

In [2] we introduced hypo-analytic differential operators which by definition map hypo-analytic functions to hypo-analytic functions. A linear differential operator \(P \) on \(\Omega \) is hypo-analytic if and only if for every hypo-analytic local chart \((U, Z^1, \ldots, Z^m)\), \(U \) sufficiently small, and vector fields \(M_1, \ldots, M_m \) satisfying \(M_j Z^k = \delta^k_j \) we have: \(P = \sum_{|a| \leq n} a_n(x)M^n \), where each \(a_n \) is a hypo-analytic function on \(U \). Let \(p \) be an arbitrary point of \(\Omega \). The differentials of the germs of hypo-analytic functions at \(p \) make up a complex vector subspace of the complex cotangent space \(CT^*_p \Omega \). This subspace, which we denote by \(T'_p \), has dimension \(m \). Condition (2) in the definition of hypo-analytic structures implies that the subspace \(T'_p \) makes up a smooth vector subbundle \(T' \) of the complex cotangent bundle \(CT^* \Omega \). \(T' \) will be referred to as the structure bundle.

We now introduce the concept of hypo-analytic submanifolds. By a submanifold of \(\Omega \) we mean a subset of \(\Omega \) equipped with a \(C^\infty \) structure such that the natural injection into \(\Omega \) is a \(C^\infty \) map with injective differential. Let \(M \) be a submanifold of \(\Omega \). We shall denote by \(\pi_M \) the natural map \(T^* \Omega |_M \rightarrow T^* M \) and by \(\pi^C_M \) the analogous map of the complex cotangent bundles. In general, \(T'_M = \pi^C_M(T') \) is not a vector bundle.

Definition 2.1. A submanifold \(M \) of \(\Omega \) is called a hypo-analytic submanifold if it is equipped with a hypo-analytic structure whose structure bundle is identical to \(T'_M \) and which has the following property: Given any hypo-analytic function \(f \) on an open set \(\Omega' \subset \Omega \) which intersects \(M \), the restriction of \(f \) to \(M \cap \Omega' \) is hypo-analytic.

Simple examples show that the second property in the above definition is not redundant.

Proposition 2.1. Suppose \(\Sigma \) is a hypo-analytic submanifold of \(\Omega \) whose structure bundle has dimension \(m-k \). Then each point \(q \in \Sigma \) is contained in a hypo-analytic chart \((U; Z^1, \ldots, Z^m)\) of \(\Omega \) with \(Z^{m-k+1}, \ldots, Z^m \) all vanishing on \(U \cap \Sigma \).

Proof. Let \(q \in \Sigma \) and \((U; W^1, \ldots, W^m)\) be a hypo-analytic chart for \(\Omega \) around \(q \). Since the differentials \(dW^1, \ldots, dW^m \) span \(CT^*U \), without loss of generality we may assume that \(\pi^C_{\Sigma}(dW^1), \ldots, \pi^C_{\Sigma}(dW^{m-k}) \) span \(CT^*(U \cap \Sigma) \).

Moreover, \((U \cap \Sigma, W^1_{|\Sigma}, \ldots, W^{m-k}_{|\Sigma})\) is a hypo-analytic chart in \(\Sigma \) since \(\Sigma \) is a hypo-analytic submanifold of \(\Omega \).
Now W^{m-k+1}, \ldots, W^m all restrict to hypo-analytic functions in Σ. Therefore, there are holomorphic functions H_1, \ldots, H_k such that $W^{m-k+j}(x) = H_j(W^1(x), \ldots, W^{m-k}(x))$ for each $x \in \Sigma \cap U$ and $1 \leq j \leq k$. Here the set U may have to be contracted. For $x \in U$, let

$$Z^j(x) = W^j(x), \quad 1 \leq j \leq m - k,$$

and

$$Z^l(x) = W^{m-k+l}(x) - H_l(W^1(x), \ldots, W^{m-k}(x))$$

when $m - k < l \leq m$.

Then $(U; Z^1, \ldots, Z^m)$ is a hypo-analytic chart on Ω satisfying the properties in the proposition.

Remark 2.1. If Σ is a hypo-analytic submanifold of Ω, then the dimension of Σ is the same as the dimension of its structure bundle.

Suppose now P is a hypo-analytic differential operator on Ω. We would like to introduce the concept of noncharacteristic hypersurfaces. Let Σ be a hypo-analytic hypersurface of Ω. By Proposition 2.1, Σ is locally given by $H(x) = 0$, where H is hypo-analytic and $dH \neq 0$. If $(U; Z^1, \ldots, Z^m)$ is a hypo-analytic chart for Ω near a central point $q \in \Sigma$, then P can be written as $P = \sum_{|\alpha| \leq k} a_{\alpha}(Z(x)) M^\alpha$ and $H(x) = \hat{H}(Z(x))$ for some holomorphic functions a_{α} and \hat{H} in a neighborhood of $Z(q)$ in C^m. We push everything by the map Z into C^m near $Z(q)$ and write $P^Z(z, \frac{\partial}{\partial z}) = \sum_{|\alpha| \leq k} a_{\alpha}(z)(\frac{\partial}{\partial z})^\alpha$ and $\Sigma^Z = \{z \in C^m : \hat{H}(z) = 0\}$.

Since $dH \neq 0$, Σ^Z is a complex submanifold of C^m of complex codimension 1 passing through $Z(q)$.

If $(V; W^1, \ldots, W^m)$ is another hypo-analytic chart about q, let G be a biholomorphism near $Z(q)$ in C^m such that $(W^1, \ldots, W^m) = G(Z^1, \ldots, Z^m)$. Then $P^W_k(w, \frac{\partial}{\partial w})$ and Σ^W are the expressions of $P^Z_k(z, \frac{\partial}{\partial z})$ and Σ^Z in the coordinates w^1, \ldots, w^m of C^m. Hence, in particular, Σ^Z is noncharacteristic with respect to P^Z if and only if Σ^W is noncharacteristic with respect to P^W.

This observation justifies the following definition in which we use the same notations as above.

Definition 2.2. We say Σ is noncharacteristic with respect to P at a point $q \in \Sigma$ if Σ^Z is noncharacteristic with respect to $P^Z(z, \frac{\partial}{\partial z})$ at $Z(q)$ for some hypo-analytic chart $(U; Z^1, \ldots, Z^m)$ about q.

We can now formulate a Cauchy-Kovalevska theorem for a hypo-analytic differential operator and hypo-analytic Cauchy data on a noncharacteristic hypo-analytic hypersurface.

Suppose now P is a hypo-analytic differential operator and Σ is a noncharacteristic hypo-analytic hypersurface with respect to P at the point $q \in \Sigma$. Let
the order of P near $q = k$. Suppose L is a hypo-analytic vector field not belonging to $CT\Sigma$ at the point q (and hence near q). Then we have:

Theorem 2.1. There is an open neighborhood Ω' of q in Ω such that to every hypo-analytic function f in Ω' and to every set of k hypo-analytic functions u_0, \ldots, u_{k-1} on $\Sigma \cap \Omega'$, there is a unique hypo-analytic function u in Ω' such that

$$Pu = f \quad \text{in } \Omega',$$

and for every $j = 0, \ldots, k-1$, $L^j u = u_j$ in $\Sigma \cap \Omega'$.

Proof. By Proposition 2.1, $q \in \Sigma$ is contained in a hypo-analytic chart $(U; Z^1, \ldots, Z^m)$ of Ω with Z^m vanishing on $U \cap \Sigma$. Let M_1, \ldots, M_m be the vector fields in U satisfying $M_j Z^k = \delta^k_j$. Then in the chart (U, Z), we may write $P = \sum_{|\alpha| \leq k} a_{\alpha}(x) M^\alpha$ and $L = \sum_j c_j(x) M_j$, where the coefficients are all hypo-analytic. The condition $L \notin CT\Sigma$ near q is equivalent to $c_m(x) \neq 0$ for x near q.

Let \hat{u}_j, \hat{f}, \hat{a}_α, and \hat{c}_j be the holomorphic functions defined near $Z(q) \in C^m$ such that $u_j(x) = \hat{u}_j(Z(x))$ etc.

Set

$$P^Z \left(z, \frac{\partial}{\partial z} \right) = \sum_{|\alpha| \leq k} a_{\alpha}(z) \left(\frac{\partial}{\partial z} \right)^\alpha,$$

$$L^Z = \sum_{j=1}^m \hat{c}_j(z) \frac{\partial}{\partial z_j} \quad \text{and} \quad \Sigma^Z = \{ z \in C^m : z_m = 0 \}.$$

The assumptions on Σ and L imply that Σ^Z is noncharacteristic for P^Z and that $\hat{c}_m(z) \neq 0$ for z near $Z(q)$. Therefore the existence part of Theorem 2.1 follows from the existence part of the holomorphic version of the Cauchy-Kovalevska theorem applied to the problem

$$P^Z \hat{u} = \hat{f} \quad \text{near } Z(q) \text{ in } C^m$$

and for $0 \leq j \leq k-1$,

$$(L^Z)^j \hat{u} = \hat{u}_j \quad \text{near } Z(q) \text{ in } \Sigma^Z \text{ (see [7]).}$$

We just set $u(x) = \hat{u}(Z(x))$ and observe that $M_j u(x) = \frac{\partial u}{\partial z_j}(Z(x))$ for each $j = 1, \ldots, m$. To see the uniqueness, suppose u' is another solution and set $v = u - u'$. Then

$$Pv = 0 \quad \text{in } \Omega' \quad \text{and} \quad L^j v = 0 \quad \text{in } \Sigma \cap \Omega'$$

and v is hypo-analytic. Since M_1, \ldots, M_{m-1} all belong to $CT\Sigma$ and $v = 0$ on Σ, it follows that $M_j v = \cdots = M_{m-1} v = 0$ on Σ (near q). Now $L = \sum_{j=1}^m c_j(x) M_j$ with $c_m(x) \neq 0$ and $L v = 0$ on Σ. Therefore $M_m v = 0$ on Σ. Moreover, from $L^j v = 0$ for $0 \leq j \leq k-1$, we deduce that $M^\alpha v = 0$ for $|\alpha| \leq k-1$ on Σ. Next, since the coefficient of M^k_m in $P = \sum_{|\alpha| \leq k} a_{\alpha}(x) M^\alpha$
is nonzero, it follows that on \(\Sigma \), \(M^\alpha v = 0 \) for \(|\alpha| \leq k \). Finally, applying the vector fields \(M_j \) to the equation \(P v = 0 \), we see that \(M^\alpha v = 0 \) on \(\Sigma \) for all indices \(\alpha \). Now let \(\hat{v} \) be the holomorphic function near \(Z(q) \) in \(C^m \) satisfying \(v(x) = \hat{v}(Z(x)) \).

We write the power series of \(v \) around \(Z(q) \) as

\[
\hat{v}(z) = \sum a_\alpha (z - Z(q))^\alpha, \quad \text{where} \quad a_\alpha = \frac{1}{\alpha!} \left(\frac{\partial}{\partial z} \right)^\alpha \hat{v}(Z(q)).
\]

But then

\[
\left(\frac{\partial}{\partial z} \right)^\alpha \hat{v}(Z(q)) = (M^\alpha v)(q) = 0 \quad \forall \alpha.
\]

Therefore, \(\hat{v} \equiv 0 \) near \(Z(q) \). Hence \(v \equiv 0 \) in \(\Omega' \).

3. Real Hypo-Analytic Structures and Statement of the Main Result

We will continue to look at a maximal hypo-analytic structure on \(\Omega \). We noted that a hypersurface \(\Sigma \) is hypo-analytic if and only if \(\Sigma \) is the zero set of a hypo-analytic function \(f \) with nonzero differential. We now strengthen this condition and introduce the following:

Definition 3.1. \(\Sigma \) is said to be a real hypo-analytic hypersurface if every point \(p \in \Sigma \) has a neighborhood \(U_p \) in \(\Omega \), a hypo-analytic function \(h \) of a nonzero differential defined on \(U_p \), and \(\epsilon > 0 \) such that:

1. \(\Sigma \cap U_p = \{ x \in U_p : h(x) = 0 \} \).
2. For \(c \in C \), \(|c| < \epsilon \), the set \(\Sigma_c = \{ x \in U_p : h(x) = c \} \) is either \(\emptyset \) or a hypersurface.
3. \(\bigcup \Sigma_c \) is a neighborhood in \(U_p \) of \(p ; |c| < \epsilon \).

We note that near each point of \(\Sigma \), the above definition gives a local foliation of \(\Omega \) by means of hypo-analytic hypersurfaces.

Example 1. Suppose \(\Omega \) is a real analytic structure. The real analytic structure can be viewed as a hypo-analytic structure and in this case, any real analytic hypersurface is real hypo-analytic.

Example 2. Consider a hypo-analytic local chart \((U, Z)\) around 0 in a maximal hypo-analytic structure on \(R^m \). Suppose \(Z_j = x_j + \sqrt{-1} \phi_j(x), \) \(j = 1, \ldots, m - 1 \), and \(Z_m = x_m + \sqrt{-1} \phi_m(x_m) \), where \(\phi = (\phi_1, \ldots, \phi_m) \) is real-valued, with zero differential at 0, and \(\phi(0) = 0 \).

Assume that \(U \) is small enough so that the mapping \(Z = (Z_1, \ldots, Z_m) : U \rightarrow C^m \) is a diffeomorphism of \(U \) onto \(Z(U) \). Then \(\Sigma = \{ x \in U : x_m = 0 \} \) is a real hypo-analytic hypersurface. In this case, the defining function can be taken to be \(Z_m \).

Lemma 3.2 will show that Example 2 is a typical example.
The proof of the main theorem will use two equivalent formulations of microlocal hypo-analyticity that were developed in [1]. We briefly recall them here.

Sato's Microlocalization. We consider a hypo-analytic local chart \((U, Z)\) of the maximal structure \(\Omega\).

In the sequel \(\Gamma\) is a nonempty, acute, and open cone in \(R^m\setminus\{0\}\). For \(A\) an open subset of \(U\) and \(\delta > 0\), let

\[N_\delta(A, \Gamma) = \{Z(x) + \sqrt{-1} Z_x(x)v : x \in A, v \in \Gamma, |v| < \delta\}. \]

Let \(B_\delta(A, \Gamma)\) denote the space of holomorphic functions on \(N_\delta(A, \Gamma)\) of tempered growth. More precisely, a holomorphic function \(f\) with domain \(N_\delta(A, \Gamma)\) is in \(B_\delta(A, \Gamma)\) if it satisfies the condition: to every compact subset \(K\) of \(N_\delta(A, \Gamma)\) there are an integer \(k \geq 0\) and a constant \(c > 0\) such that

\[|f(z)| \leq c(\text{dist}[z, Z(A)])^{-k} \]

for all \(z\) in \(K\).

In [1] it was shown that if \(A\) is sufficiently small and \(f \in B_\delta(A, \Gamma)\), then for every \(\psi \in C^\infty_c(A)\),

\[\lim_{t \to +0} \int_A f(Z(x) + \sqrt{-1} Z_x(x)tv) \psi(x) \, dZ(x) \]

exists and is independent of \(v \in \Gamma\). Let \(bf\) denote the limit distribution.

Definition 3.2. Let \(u \in D'(U)\) and \((x, \xi) \in U \times R_m\setminus\{0\}\). We say that \(u\) is microlocally hypo-analytic at \((x, \xi)\) if there are an open neighborhood \(A \subseteq U\) of \(x\), \(\delta > 0\) and a finite collection of nonempty acute open cones \(\Gamma_k\) in \(R_m\setminus\{0\}\) \((k = 1, \ldots, r)\) satisfying \(\langle v, \xi \rangle < 0\) for every \(v\) in each \(\Gamma_k\) and such that the following hold:

- for each \(k\) there is \(f_k \in B_\delta(A, \Gamma_k)\) such that in \(A\),
 \[u = bf_1 + \cdots + bf_r. \]

The above definition of microlocal hypo-analyticity in the cotangent space does not depend on the choice of the chart \((U, Z)\) (see [1]).

Definition 3.3. Let \(u \in D'(\Omega)\). The hypo-analytic wavefront set of the distribution \(u\) is denoted by \(WF_{ha}u\) and is defined as

\[WF_{ha}u = \{(x, \xi) \in T^*\Omega : u \text{ is not hypo-analytic at } (x, \xi)\}. \]

The FBI Transform. We continue to work in a chart \((U, Z)\) of the maximal structure \(\Omega\). Assume that \(Z = (Z_1, \ldots, Z_m) : U \to C^m\) is a diffeomorphism of \(U\) onto \(Z(U)\) and that \(U\) is the domain of local coordinates \(x_j\) \((1 \leq j \leq m)\) all vanishing at a "central point" which will be denoted by \(0\). We will suppose \(Z(0) = 0\) and by substituting \(Z_x(0)^{-1}Z(x)\) for \(Z(x)\) if necessary, we may assume that

\[Z_x(0) = \text{the identity matrix}. \]
Let u be a compactly supported distribution in U. We shall refer to
\[F(u, z, \zeta) = \int_y \exp(\sqrt{-1} \cdot z - Z(y)) - \langle \zeta \rangle (z - Z(y))^2 u(y) dZ(y) \]
as the Fourier-Bros-Iagolnitzer (in short, FBI) transform of u. Here $z \in C^m, \zeta \in C_m$ with $|\text{Im}\ \zeta| < |\text{Re}\ \zeta|$, and
\[\langle \zeta \rangle^2 = \zeta_1^2 + \cdots + \zeta_m^2. \]
In [1], the authors established the following FBI transform criterion for hypoanalyticity. We will state it here in a form that will be of convenience to us.

Theorem 3.1. The following two properties of a compactly supported distribution are equivalent:

(i) u is microlocally hypo-analytic at $(0, \zeta_0) \in T^* U \setminus \{0\}$.

(ii) There is an open neighborhood V of 0 in C^m, a conic open neighborhood \mathbb{C}_0 of ζ_0 in C_m, and constants $c, r > 0$ such that $|F(u, z, \zeta)| \leq c \exp(-r |\zeta|)$ for all z in V and for all ζ in \mathbb{C}_0.

We are now ready to state the main theorem of this paper.

Theorem 3.2. Let P be a hypo-analytic differential operator and Σ a real hypoanalytic hypersurface which is noncharacteristic for P. Assume $u \in D'(\Omega)$ such that Pu is hypo-analytic. Suppose $\sigma \in T^* \Omega \mid \Sigma$ for which the hypo-analytic Cauchy data of u are microlocally hypo-analytic at $\pi_\Sigma(\sigma)$. Then $\sigma \notin \text{WF}_h u$.

Remark 3.2. The proof will actually show that it is sufficient to have Pu microlocally hypo-analytic at σ.

From Theorem 3.2 we deduce the following consequences. Σ and P will be as in Theorem 3.2.

Corollary 3.1. Suppose Pu is hypo-analytic at $q \in \Sigma$ and the hypo-analytic Cauchy data of u is also hypo-analytic at q. Then u is hypo-analytic at q.

Proof. Since the hypo-analytic Cauchy data is hypo-analytic at q, it is microlocally hypo-analytic in every direction in $T_q^* \Sigma \setminus \{0\}$. (See [1] for a proof.) Therefore, by Theorem 3.2, u is microlocally hypo-analytic in every direction in $T_q^* \Omega$. Hence by [1], u is hypo-analytic at q.

Corollary 3.2. Suppose $Pu = 0$ and the hypo-analytic Cauchy data of u on Σ is 0. Then $u \equiv 0$.

Proof. By Corollary 3.1, u is hypo-analytic. But then by the uniqueness part of Theorem 2.1, $u \equiv 0$.

The following lemmas will be used in the proof of Theorem 3.2.

Lemma 3.1. Let P be a hypo-analytic differential operator and $\sigma \notin \text{Char } P$. If $u \in D'(\Omega)$ for which $\sigma \notin \text{WF}_h Pu$, then $\sigma \notin \text{WF}_h u$.

Proof. We reason in a chart (U, Z) around 0 where we assume that $Z(0) = 0, dZ(0) = \text{Id}$, $\sigma = (0, \zeta^0) \in T^* U$, and U is the domain of local coordinates
We can then take $\Re Z_j$ as new coordinates in which $Z(x) = x + \sqrt{-1}\phi(x)$, $\phi(0) = 0$, $d\phi(0) = 0$ and $\phi = (\phi_1, \ldots, \phi_m)$ is real-valued. Moreover, the functions Z_j may be selected so that all the derivatives of order 2 of the ϕ_j vanish at 0. Indeed, if this is not already so it suffices to replace each Z_j by

$$Z_j - \frac{\sqrt{-1}}{2} \sum_{k=1}^{m} \sum_{l=1}^{m} \frac{\partial^2 \phi_j}{\partial x_k \partial x_l}(0) Z_k Z_l.$$

Let M_j $(1 \leq j \leq m)$ be the vector fields satisfying $M_j Z_k = \delta_j^k$. To prove the lemma, we will use the FBI transform. First we note that for any $f \in C^1(U)$,

$$\langle df, M_k \rangle = M_k f = \sum_j \langle (M_j f) dZ_j, M_k \rangle \quad \forall k.$$

It follows that

$$df = \sum_{j=1}^{m} (M_j f) dZ_j.$$

Therefore, if g or h has compact support in U, by Stokes' theorem we have

$$0 = \int_{\partial U} h g dZ_1 \wedge \cdots \wedge dZ_m \wedge \cdots \wedge dZ_m = (-1)^{j-1} \left[\int_U [(M_j h) g + h(M_j g)] dZ_1 \wedge \cdots \wedge dZ_m \right].$$

Hence

$$\int_U (M_j h) g dZ_1 \wedge \cdots \wedge dZ_m = \int_U h(M_j g) dZ_1 \wedge \cdots \wedge dZ_m.$$

If U is sufficiently small, in the chart (U, Z) we may write

$$P = \sum_{|\alpha| \leq k} a_\alpha(x) M^\alpha,$$

where each a_α is hypo-analytic on U.

Since $\sigma = (0, \xi^0) \notin WF_{ha} Pu$, Theorem 3.1 tells us that

$$F(Pu, z, \zeta) = \int_U \exp(\sqrt{-1} \zeta \cdot (z - Z(y)) - \langle \zeta \rangle (z - Z(y))^2) \sum_{|\alpha| \leq k} a_\alpha(y) M^\alpha u(y) dZ(y)$$

has an exponential decay for z near 0 and ζ in a complex conic neighborhood of ξ^0.

Since $y \mapsto \exp(\sqrt{-1} \zeta \cdot (z - Z(y)) - \langle \zeta \rangle (z - Z(y))^2)$ is hypo-analytic, for each $j = 1, \ldots, m$,

$$M_j(\exp h(z, \zeta, y)) = \left[-\sqrt{-1} \zeta_j + 2 \langle \zeta \rangle (z_j - Z_j(y)) \right] \exp(h(z, \zeta, y)).$$
where
\[h(z, \zeta, y) = \sqrt{-1} \zeta \cdot (z - Z(y)) - \langle \zeta \rangle (z - Z(y))^2. \]

This observation together with the integration by parts formula (3.1) imply the existence of a hypo-analytic amplitude \(Q(z, \zeta, y) \) elliptic at \(\sigma \) such that
\[
F(Pu, z, \zeta) = \int_U \exp(\sqrt{-1} \zeta \cdot (z - Z(y)) - \langle \zeta \rangle (z - Z(y))^2)Q(z, \zeta, y)u(y)\,dZ.
\]

By the results of [5], we conclude that \(\sigma \notin WF_{h\alpha}u. \)

Lemma 3.2. Suppose \(\Sigma \) is a real hypo-analytic hypersurface of \(\Omega \). Then each point \(p \in \Sigma \) is contained in a hypo-analytic chart \((U, Z_1, \ldots, Z_m) \), where \(U \) is the domain of local coordinates \((U, x_1, \ldots, x_m) \) in which
\[
Z_j = x_j + \sqrt{-1} \phi_j(x) \quad \text{for} \quad 1 \leq j < m
\]
and \(Z_m = x_m + \sqrt{-1} \Psi(x_m) \), where \((\phi_1, \ldots, \phi_{m-1}, \Psi) \) is real-valued and \(\Sigma \cap U = \{ x \in U : x_m = 0 \} \).

Proof. By Proposition 2.1, there is a chart \((U, Z) \) of \(\Omega \) near \(p \) such that
\[
L \cap U = \{ x \in U : x_m = 0 \}.
\]
Since \(d(Z_1|_\Sigma), \ldots, d(Z_{m-1}|_\Sigma) \) are linearly independent, by making linear substitutions if necessary, we may assume that \(d(\mathbb{R}Z_1|_\Sigma), \ldots, d(\mathbb{R}Z_{m-1}|_\Sigma) \) are independent.

We may then take \(\mathbb{R}Z_1, \ldots, \mathbb{R}Z_{m-1} \) as coordinates on \(\Sigma \). By multiplying \(Z_m \) by \(\sqrt{-1} \) if necessary, we may also assume that \(\mathbb{R}Z_1, \ldots, \mathbb{R}Z_m \) are coordinates in \(U \) (all this locally near \(p \)).

Then
\[
Z_j = x_j + \sqrt{-1} \phi_j, \quad Z_m = x_m + \sqrt{-1} \Psi(x), \quad 1 \leq j < m,
\]
and since \(Z_m|_{\Sigma \cap U} = 0 \), we have
\[
\Sigma \cap U = \{ x \in U : x_m = 0 \}.
\]

Next let \(h \) be the defining function of \(\Sigma \) near \(p \) satisfying the conditions of Definition 3.1. Write \(h(x) = \hat{h}(Z(x)) \), where \(\hat{h} \) is holomorphic.

Since \(h|_\Sigma = \hat{h}(Z_1, \ldots, Z_{m-1}, 0)|_\Sigma = 0 \) and the image of \(\Sigma \) under \((Z_1, \ldots, Z_{m-1}) \) is a totally real manifold of maximal dimension in \(C^{m-1} \), it follows that
\[
h(x) = \hat{h}(Z_1(x), \ldots, Z_{m-1}(x)) = \hat{h}(Z_m(x)).
\]

Now since \(dh \neq 0 \), \(\hat{h} \) is invertible. Hence, for any constant \(c \in C \),
\[
h(x) = c \quad \text{iff} \quad Z_m(x) = \hat{h}^{-1}(c).
\]

It now follows from Definition 3.1 that \(Z_m = x_m + \sqrt{-1} \Psi(x_m) \).
4. PROOF OF THEOREM 3.2

Lemma 3.2 permits us to reason in a local hypo-analytic chart \((U, Z)\), where \(U\) is also the domain of local coordinates \((U, x_1, \ldots, x_m)\) centered at 0 with \(Z_j = x_j + \sqrt{-1}\phi_j(x), 1 \leq j < m, Z_m = x_m + \sqrt{-1}\Psi(x_m), \Sigma\) is given by \(x_m = 0\) and \(\sigma = (0, \xi_0)\).

We may also assume that \(Z(0) = 0, dZ(0) = \text{Id}, \phi''(0) = 0, \text{and } \Psi''(0) = 0\).

Let \(M_j (1 \leq j \leq m)\) be the vector fields satisfying \(M_j Z_k = \delta_{jk}\). If \(p \in \Sigma\) and \(1 \leq j < m\), then \((M_j)_p \in CT_p \Sigma\). Moreover, after multiplication by a nonvanishing hypo-analytic function, \(P\) will have the form

\[P = M_m^n + \sum_{|\alpha| \leq n, \alpha_m < n} a_\alpha(x) M^\alpha, \]

where the \(a_\alpha\) are all hypo-analytic functions. Since \(Pu\) is hypo-analytic, it follows that \(u\) is a \(C^\infty\) function of \(x_m\) valued in the space of distributions in the variable \(x' = (x_1, \ldots, x_{m-1})\) (see [8]). In particular, the trace of \(u\) on \(\Sigma\) is well defined.

We may therefore restate the theorem as:

Suppose \(Pu\) is hypo-analytic and \((0', \xi') \in T_{0'}^* \Sigma\) such that \((0', \xi_0') \notin WF_{ha}(M_m^j u(x', 0))\) for \(0 \leq j < n\). Then \((0, (\xi', \xi_n')) \notin WF_{ha} u\).

Since the statement is purely local, we may assume that the support of \(u\) is contained in a set of the form

\[\{x' : |x'| \leq T/2\} \times (-T, T) \quad \text{and} \quad \{(x', 0) : |x'| \leq T\} \subseteq \Sigma. \]

For \(t \in (-T, T)\), let \(\Sigma_t = \Sigma \times \{t\}\) and \(\Omega_t = \{(x', x_m) : |x'| < T/2, 0 \leq x_m < t \text{ or } t < x_m \leq 0\}\).

We observe that for any \(j, k\), and \(l\),

\[M_j (M_k Z_l) = 0 = M_k (M_j Z_l). \]

Since the differentials \(dZ_1, \ldots, dZ_m\) span \(CT^* U\), it follows that the vector fields \(M_j\) commute pairwise. This observation together with the integration by parts formula of §3 and the fact that for each \(t\) and \(j < m, M_j \in CT \Sigma_t\), yield:

\[
\int_{\Omega_t} (Pu) w \, dZ_1 \wedge \cdots \wedge dZ_m - \int_{\Omega_t} u(tPw) \, dZ_1 \wedge \cdots \wedge dZ_m
= \sum_{j+k \leq n-1} \int_{\Sigma_t} (M_m^j u)(B_{jk}(x, M^l)M_m^k w) \, dZ_1 \wedge \cdots \wedge dZ_{m-1}
- \sum_{j+k \leq n-1} \int_{\Sigma_0} (M_m^j u)(B_{jk}(x, M^l)M_m^k w) \, dZ_1 \wedge \cdots \wedge dZ_{m-1},
\]

where the \(B_{jk}\) are hypo-analytic differential operators in \(M_1, \ldots, M_{m-1}\) of order \(n-1-j-k\).
For $\alpha = (z_0', \xi') \in C^{m-1} \times (R_{m-1} \setminus \{0\})$ and $\tau \in C.,$ satisfying $1 < |\tau| < C_0$, $|3\tau| < \varepsilon |\tau|$ (ε and C_0 to be determined later), set

$$V_{\alpha, \tau}(z') = \exp(\sqrt{-1}(z_0' - z') \cdot \xi' - \tau |\xi'|^2(z_0' - z')^2).$$

Since γP is a hypo-analytic differential operator, let

$$\gamma P = \sum_{|\alpha| \leq n} c_{\alpha}(x) M^\alpha,$$

where each $c_{\alpha}(x) = \tilde{c}_{\alpha}(Z(x))$ for holomorphic \tilde{c}_{α}. Set

$$\gamma P \left(z, \frac{\partial}{\partial z} \right) = \sum_{|\alpha| \leq n} \tilde{c}_{\alpha}(z) \left(\frac{\partial}{\partial z} \right)^\alpha.$$

Let $\Sigma_t = \{(z', t) \in C^{m-1} \times \{t\} : |z'| \leq T \}$.

The Cauchy-Kovalevskaya theorem tells us that there is $t_0 > 0$ such that if $t \in [-t_0, t_0]$ we can find a solution $\tilde{w}(z) = \tilde{w}_{\alpha, \tau, t}(z)$ in a neighborhood of $\{(z', x_m) \in C^{m-1} \times R : |z'| \leq T, |x_m| < t_0 \}$ of the problem

$$\gamma P \left(z, \frac{\partial}{\partial z} \right) \tilde{w} = 0, \quad \tilde{w}|_{\Sigma_t} = \cdots = \left(\frac{\partial}{\partial z_m} \right)^{n-2} \tilde{w}|_{\Sigma_t} = 0$$

(4.2)

$$\left(\frac{\partial}{\partial z_m} \right)^{n-1} \tilde{w}|_{\Sigma_t} = V_{\alpha, \tau}. $$

The solution $\tilde{w} = \tilde{w}_{\alpha, \tau, t}$ can be estimated in terms of the Cauchy data on Σ_t. Indeed, the Ovchinnikov method (see [6]) implies

$$\exists c > 0 \text{ independent of } t, \tau, \alpha \text{ such that}$$

$$|\tilde{w}_{\alpha, \tau, t}(w', z_m)| \leq c \sum_{|\beta'| \leq n} \sup_{|z'| - w' | \leq c |z_m - t|} |\partial_{z'} \gamma P_{\alpha, \tau}(z')|. $$

For $|\beta'| \leq n$ we have

(4.4)

$$|\partial_{z'} \gamma P_{\alpha, \tau}(z')| \leq c_1 (1 + |\xi'|)^n \exp(\langle 3(z' - z'_0), \xi' \rangle - |\xi'|^2 |\Re \{ (\Re z' - \Re z'_0)^2 \}
$$

$$- 2 \Re \tau \Re (z' - z'_0) \cdot 3(z' - z'_0)) \rangle.$$

We are going to be interested in z', z'_0, where $3z'$ is small compared to $\Re z'$ and z'_0 is close enough to $0'$. This consideration together with a sufficiently small choice of ε in the definition of τ imply for $|\beta'| \leq n$

(4.5)

$$|\partial_{z'} \gamma P_{\alpha, \tau}(z')| \leq c_1 (1 + |\xi'|)^n \exp \left(\langle 3(z' - z'_0), \xi' \rangle - \frac{\Re \tau}{2} |\xi'|^2 |\Re (z' - z'_0)^2 - (3z' - 3z'_0)^2| \right).$$
Application of (4.5) to (4.3) yields

\[|\hat{w}_{\alpha, \tau, t}(z', x_m + i\psi(x_m))| \leq c_1 (|z'|)^n \exp \left(\frac{(\Re(z' - z_0'), \xi') - \frac{\Re \tau}{2} |\xi'|}{\zeta_1} \times [((\Re z' - \Re z_0')^2 - (\Im z' - \Im z_0')^2) + c|\xi'||x_m - t] \right). \]

Let \(w_{\alpha, \tau, t}(x) = \hat{w}_{\alpha, \tau, t}(Z(x)) \). For \(\alpha = (z_0', \xi') \) in a sufficiently small conic neighborhood of \((0', \xi_0') \) and with \(w = w_{\alpha, \tau, t} \) we wi. estimate the term

\[\int_{\Omega} (Pu) w dZ_1 \wedge \cdots \wedge dZ_m \text{ in (4.1)}. \]

(4.2) tells us that \(w = w_{\alpha, \tau, t} \) solves

\[(4.2') \quad i P(x, M) w = 0, \quad w|_{\Sigma_1} = \cdots = M^{n-2} w|_{\Sigma_1} = 0, \]

and

\[M_m^{n-1} w(x', t) = V_{\alpha, \tau}(Z(x', t)). \]

Since \(Pu \) and \(w = w_{\alpha, \tau, t} \) are hypo-analytic, we can deform the integration contour from \(\Omega_1 \) to the image of \(\Omega_1 \) under the map

\[(x', x_m) \mapsto \theta(x', x_m) = Z(x', x_m) - \sqrt{-1} \left(d\chi(x') \frac{\xi'}{|\xi'|}, 0 \right), \]

where \(\chi(x') \) is a cutoff function \(\equiv 1 \) near \(\Re z_0' \) and \(d \) is chosen so that we stay inside the domain of hypo-analyticity.

Along this contour, (4.6) gives the following estimate on \(w = w_{\alpha, \tau, t} \):

\[\|w\| \leq c_1 (|z'|)^n \exp \left(e^{-d\chi(x')|\xi'| + (\phi'(x), \xi') - \frac{\Re \tau}{2} |\xi'| |(x' - \Re z_0')^2 (\phi'(x) - d\chi(x') \frac{\xi'}{|\xi'|} - \Re z_0')^2 + c|\xi'||x_m - t|} \right). \]

(Here \(\phi' = (\phi_1, \ldots, \phi_{m-1}) \).)

By using the term \((x' - \Re z_0')^2 \) when \(x' \) is away from \(\Re z_0' \) and the term \(d\chi(x')|\xi'| \) when \(x' \) is near \(\Re z_0' \), we see that \(w \) is exponentially decaying along this contour. The latter may require shrinking of the interval \([0', 0] \) to a smaller interval which we will still call \([-t_0, t_0] \).

It follows that we can find a sufficiently small \(t > 0 \) and a sufficiently large \(c_2 > 0 \) such that

\[\left| \int_{\Omega_1} (Pu) w_{\alpha, \tau, t} dZ_1 \wedge \cdots \wedge dZ_m \right| \leq c_2 \exp \left(-\frac{|\xi'|}{c_2} \right) \]

for \(|t| \leq t_0 \) and \(\alpha = (z_0', \xi') \) in a small conic neighborhood of \((0', \xi_0') \).
Since \(w = w_{\alpha, t, t} \) solves (4.2'), formula (4.1) reduces to (4.9)
\[
i(-1)^{n+1} \int_{\Omega} (Pu)w \, dZ_1 \wedge \cdots \wedge dZ_m
= \int_{|x'| \leq T} e^{(\sqrt{-1}(z_0' - Z'(x', t), \xi') - \tau |\xi'| |z_0' - Z'(x', t)|^2)} \\
\times u(x', t) \, dZ_1 \wedge \cdots \wedge dZ_{m-1}(x', t)
+ i(-1)^n \sum_{j+k \leq n-1} \int_{\Sigma_0} (M^j_M u)(B_{jk}(x, M')M^K_M w) \, dZ_1 \wedge \cdots \wedge dZ_{m-1}(x', 0).
\]

We consider now the integrals over \(\Sigma_0 = \Sigma \). Fix \(j \) and \(k \leq j + k \leq n - 1 \). Since by assumption \((0', \xi') \notin WF_{ha}(M^j_M u|\Sigma_0)\), without loss of generality we may assume
\[
M^j_M u|\Sigma_0 = \lim_{x \to 0} f_j(Z'(x', 0) + \sqrt{-1}sZ'(x', 0)v)
\]
\((Z' = (Z_1, \ldots, Z_{m-1}))\) for some tempered holomorphic function \(f_j \), and \(v \) is in a cone \(\Gamma_j \subseteq R^{m-1} \) satisfying
\[
\langle v, \xi_0' \rangle < 0.
\]

Hence, in the integral over \(\Sigma_0 \), we may deform a contour to \(Z(x', 0) + \sqrt{-1}s\chi(x')Z(x', 0)v \), where \(s \) is chosen sufficiently small and \(\chi(x') \) is selected as before.

Estimates analogous to (4.6) are also valid for the derivatives \(\{M^k_M w\}_k \). Such estimates and the new contour for each \(j \) yields, after enlarging \(c_2 \) if necessary,
\[
\int_{\Sigma_0} (M^j_M u)(B_{jk}(x, M')M^K_M w) \, dZ_1 \wedge \cdots \wedge dZ_{m-1} \leq c_2 \exp \left(-\frac{|\xi'|}{c_2} \right)
\]
for \(t \in [-t_0, 0] \) and \(\alpha = (z^0_0, \xi_0') \) in a small conic neighborhood of \((0', \xi_0')\).

It follows that (after modifying \(t_0 \) and \(c_2 \))
\[
\int_{|x'| \leq T} u(x', t) \exp(\sqrt{-1}(z_0' - Z'(x', t), \xi') - \tau |\xi'| (Z'(x', t) - z_0')^2) \, dZ'
\]
\[
\leq c_2 \exp \left(-\frac{|\xi'|}{c_2} \right)
\]
for \(t \in [-t_0, 0] \) and \(\alpha = (z^0_0, \xi') \) in a small conic neighborhood of \((0', \xi_0')\).

Let \(I(t, \tau, z_0', \xi') \) = the integral (without the absolute value) in (4.11). Suppose (4.11) holds in a cone \(\Gamma' \subseteq R^{m-1} \) containing \(\xi_0' \).
Let $z_0 = (z_0^', z_0^m) \in C^{m-1} \times C$ and $\xi = (\xi', \xi_m) \in R_{m-1} \times R$. In order to examine $WF_{ha} u$ at $(0, (\xi_0', \xi_m))$, we have to estimate the FBI:

$$F(z_0, \xi) = \int_{|t| \leq t_0} \int_{|x'| \leq T} \exp(\sqrt{-1}(z_0 - Z(x', t), \xi)) - |\xi|(z_0 - Z(x', t))^2) u(x', t) \, dZ.$$

But since Z_m depends only on t, we get

$$F(z_0, \xi) = \int_{|t| \leq t_0} \exp((z_0^m - Z_m(t))\xi_m - |\xi|(z_0^m - Z^m)^2) \times I(t, |\xi|/|\xi'|, z_0^', \xi') \, dZ_m(t).$$

We now select C_0 as follows. Since $(0, \xi_0') \notin \text{Char} P$, by Lemma 3.1 there exists a constant $C_0 > 1$ such that if $|\xi| \geq C_0|\xi'|$, then $F(z_0, \xi)$ decays exponentially for z_0 near 0 in C^m.

Let $\Gamma = \Gamma' \times R$. Pick $\xi = (\xi', \xi_m) \in \Gamma$. To finish the proof, we consider two cases:

Case (i). $|\xi| \geq C_0|\xi'|$. This was just taken care of.

Case (ii). $|\xi| \leq C_0|\xi'|$. Then $|\xi| = (|\xi|/|\xi'|)|\xi'| = \tau|\xi'|$ with $1 < \tau < C_0$.

Hence (4.11) and (4.12) guarantee the exponential decay of $F(z_0, \xi)$ for z_0 near 0 in C^m.

REFERENCES