Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Computing the topological entropy of general one-dimensional maps

Authors: P. Góra and A. Boyarsky
Journal: Trans. Amer. Math. Soc. 323 (1991), 39-49
MSC: Primary 58F11; Secondary 54H20
MathSciNet review: 1062871
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A matrix-theoretic method for computing the topological entropy of continuous, piecewise monotonic maps of the interval is presented. The method results in a constructive procedure which is easily implemented on the computer. Examples for families of unimodal, nonunimodal and discontinuous maps are presented.

References [Enhancements On Off] (What's this?)

  • [1] P. Collet, J. P. Crutchfield, and J. P. Eckmann, Computing the topological entropy of maps, Comm. Math. Phys. 88 (1983), 257-262. MR 696807 (85b:58082)
  • [2] L. Block, J. Keesling, S. Li, and K. Peterson, An improved algorithm for computing topological entropy, preprint 1988. MR 1002478 (90k:58093)
  • [3] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45-63. MR 579440 (82a:58030)
  • [4] J. Milnor and W. Thurston, On iterated maps of the interval. I, II, Preprint, Inst. Adv. Studies, Princeton University. MR 970571 (90a:58083)
  • [5] R. L. Adler, A. C. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math Soc. 114 (1965), 309-319. MR 0175106 (30:5291)
  • [6] L. Block, J. Guckenheimer, M. Misuirewicz and L. S. Young, Periodic orbits and topological entropy of one-dimensional maps, Global Theory of Dynamical Systems, Lecture Notes in Math., vol. 819, Springer-Verlag, New York, 1980, pp. 18-34.
  • [7] T. N. T Goodman, Relating topological entropy and measure- theoretic entropy, Bull. London Math Soc. 3 (1971), 176-180. MR 0289746 (44:6934)
  • [8] A. Boyarsky, A matrix method for estimating the Liapunov exponent of one dimensional systems, J. Statist. Phys. 50 (1988), 213-229. MR 939487 (89g:58118)
  • [9] P. Góra, A. Boyarsky and H. Proppe, Constructive approximations to densities invariant under nonexpanding transformations, J. Statist. Phys. 51 (1988), 179-194. MR 952751 (90b:58147)
  • [10] H. Proppe, W. Byers and A. Boyarsky, Singularity of topological conjugacies between certain unimodal maps of the interval, Israel J. Math. 44 (1983), 277-288. MR 710233 (85d:58068)
  • [11] P. Góra and A. Boyarsky, Why computers like Lebesgue measure, Comput. Math. Appl. 16 (1988), 321-329. MR 959419 (89m:58107)
  • [12] L. S. Young, Entropy, Lyapunov exponents and Hausdorff dimension in differentiable systems, IEEE Trans. Circuits and Systems CAS-30 (1983), 599-607. MR 715515 (85a:58056)
  • [13] L. Block and E. Coven, Approximating entropy of maps of the interval, Dynamical Systems and Ergodic Theory, Banach Center Publications, Polish Sci. Publishers, Warsaw, 1989, pp. 237-242. MR 1102718 (92c:58106)
  • [14] P. Walters, An introduction to ergodic theory, Springer-Verlag, New York, Heidelberg and Berlin, 1982. MR 648108 (84e:28017)
  • [15] M. Misiurewicz, Jumps of entropy in one dimension, Fund. Math. 132 (1989), 215-226. MR 1002409 (90k:58114)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F11, 54H20

Retrieve articles in all journals with MSC: 58F11, 54H20

Additional Information

Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society