The hull of holomorphy of a nonisotropic ball in a real hypersurface of finite type

Authors:
A. Boggess, R. Dwilewicz and A. Nagel

Journal:
Trans. Amer. Math. Soc. **323** (1991), 209-232

MSC:
Primary 32E20; Secondary 32F25, 32F30

DOI:
https://doi.org/10.1090/S0002-9947-1991-1079050-X

MathSciNet review:
1079050

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the hull of holomorphy of a nonisotropic ball in a real hypersurface of finite type in contains an open set in which emanates from the hypersurface a distance which is proportional to the length of the minor axis of the nonisotropic ball. In addition, we prove a maximal function estimate for plurisubharmonic functions which is important in the study of boundary values of holomorphic functions.

**[BT]**M. S. Baouendi and F. Treves,*A property of the functions and distributions annihilated by a locally integrable system of complex vector fields*, Ann. of Math. (2)**113**(1981), 387-421. MR**607899 (82f:35057)****[Bi]**E. Bishop,*Differential manifolds in complex Euclidean space*, Duke Math.**32**(1965), 1-21. MR**0200476 (34:369)****[BG]**T. Bloom and I. Graham,*A geometric characterization of points of type m on real hypersurfaces*, J. Differential Geom.**12**(1977), 171-182. MR**0492369 (58:11495)****[BP]**A. Bogess and J. T. Pitts,*CR extensions near a point of higher type*, Duke Math. J.**52**(1985), 67-102. MR**791293 (86k:32012)****[BPP]**A. Boggess, J. Pitts, and J. Polking,*The local hull of holomorphy of semirigid submanifolds of codimension two*, Michigan Math. J.**34**(1987), 105-118. MR**873025 (88f:32049)****[GR]**J. Globevnik and W. Rudin,*A characterization of harmonic functions*, preprint. MR**976525 (90a:31004)****[HT]**C. D. Hill and G. Taiani,*Families of analytic disc in**with boundary as prescribed CR submanifold*, Ann. Scuola Norm Sup. Pisa**4-5**(1978), 327-380. MR**501906 (80c:32023)****[K]**J. J. Kohn,*Boundary behavior of**on weakly pseudoconvex manifolds of dimensional two*, J. Differential Geom.**6**(1972), 523-542. MR**0322365 (48:727)****[L]**H. Lewy,*On the character of the solution of an atypical differential equation in three variables and a related problem for regular functions of two complex variables*, Ann. of Math. (2)**64**(1956), 514-522. MR**0081952 (18:473b)****[N]**A. Nagel,*Vector fields and nonisotropic metrics*, Bejing Lectures in Harmonic Analysis (E. M. Stein, ed.), Ann. of Math. Studies, no. 112, Princeton Univ. Press, Princeton, N. J., 1986. MR**864374 (88f:42045)****[NSW1]**A. Nagel, E. Stein, and W. Wainger,*Boundary behavior of holomorphic functions in domains of finite type*, Proc. Nat. Acad. Sci. U.S.A.**78**(1981), 6596-6599. MR**634936 (82k:32027)****[NSW2]**-,*Balls and metrics defined by vector fields I; Basic properties*, Acta Math.**155**(1985), 103-147. MR**793239 (86k:46049)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
32E20,
32F25,
32F30

Retrieve articles in all journals with MSC: 32E20, 32F25, 32F30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-1079050-X

Article copyright:
© Copyright 1991
American Mathematical Society