Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weak type $ (1,1)$ estimates for heat kernel maximal functions on Lie groups


Authors: Michael Cowling, Garth Gaudry, Saverio Giulini and Giancarlo Mauceri
Journal: Trans. Amer. Math. Soc. 323 (1991), 637-649
MSC: Primary 43A80; Secondary 22E30, 42B25, 58G11
DOI: https://doi.org/10.1090/S0002-9947-1991-0967310-X
MathSciNet review: 967310
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a Lie group $ G$ with left-invariant Haar measure and associated Lebesgue spaces $ {L^p}(G)$, we consider the heat kernels $ {\{ {p_t}\} _{t > 0}}$ arising from a right-invariant Laplacian $ \Delta $ on $ G$: that is, $ u(t, \cdot ) = {p_t}{\ast}f$ solves the heat equation $ (\partial /\partial t - \Delta )u = 0$ with initial condition $ u(0, \cdot ) = f( \cdot )$. We establish weak-type $ (1,1)$ estimates for the maximal operator $ \mathcal{M}(\mathcal{M}\;f = {\sup _{t > 0}}\vert{p_t}{\ast}f\vert)$ and for related Hardy-Littlewood maximal operators in a variety of contexts, namely for groups of polynomial growth and for a number of classes of Iwasawa $ AN$ groups. We also study the "local" maximal operator $ {\mathcal{M}_0}({\mathcal{M}_0}f = {\sup _{0 < t < 1}}\vert{p_t}{\ast}f\vert)$ and related Hardy-Littlewood operators for all Lie groups.


References [Enhancements On Off] (What's this?)

  • [1] J.-Ph. Anker and N. Lohoué, Multiplicateurs sur certains espaces symétriques, Amer. J. Math. 108 (1986), 1303-1354. MR 868894 (88c:43008)
  • [2] N. Dunford and J. T. Schwartz, Linear operators, Vol. I, Wiley, New York, 1957.
  • [3] M. Flensted-Jensen, Spherical functions on a real semisimple Lie group. A method of reduction to the complex case. J. Funct. Anal. 30 (1978), 106-146. MR 513481 (80f:43022)
  • [4] S. Helgason, Groups and geometric analysis, Academic Press, London, 1984. MR 754767 (86c:22017)
  • [5] E. Hille and R. S. Phillips, Functional analysis on semi-groups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R.I., 1957. MR 0089373 (19:664d)
  • [6] L. Hörmander, Hypoelliptic second-order differential equations, Acta Math. 119 (1967), 147-171. MR 0222474 (36:5526)
  • [7] A. Hulanicki, Subalgebra of $ {L_1}(G)$ associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. MR 0372536 (51:8743)
  • [8] J. W. Jenkins, A characterization of growth in locally compact groups, J. Funct. Anal. 12 (1973), 113-127. MR 0349895 (50:2388)
  • [9] S. Kusuoko and D. Stroock, Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator, Ann. of Math. (2) 127 (1988), 165-189. MR 924675 (89b:35022)
  • [10] N. Lohoué and Th. Rychener, Die Resolvente von $ \Delta $ auf symmetrischen Raümen von nichtkompakten Typ, Comment. Math. Helv. 57 (1982), 445-468. MR 689073 (84m:58163)
  • [11] E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley Theory, Ann. of Math. Stud., no. 63, Princeton Univ. Press, Princeton, N.J., 1970. MR 0252961 (40:6176)
  • [12] N. Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76 (1988), 346-410. MR 924464 (89i:22018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A80, 22E30, 42B25, 58G11

Retrieve articles in all journals with MSC: 43A80, 22E30, 42B25, 58G11


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-0967310-X
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society