Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Möbius invariant Hilbert spaces of holomorphic functions in the unit ball of $ {\bf C}\sp n$


Author: Ke He Zhu
Journal: Trans. Amer. Math. Soc. 323 (1991), 823-842
MSC: Primary 46E20; Secondary 32A35, 32A40
DOI: https://doi.org/10.1090/S0002-9947-1991-0982233-8
MathSciNet review: 982233
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that there exists a unique Hilbert space of holomorphic functions in the open unit ball of $ {\mathbb{C}^n}$ whose (semi-) inner product is invariant under Möbius transformations.


References [Enhancements On Off] (What's this?)

  • [1] J. Arazy, S. Fisher, The uniqueness of the Dirichlet space among Möbius invariant Hilbert spaces, Illinois J. Math. 29 (1985), 449-462. MR 786732 (86j:30072)
  • [2] J. Arazy, S. Fisher, and J. Peetre, Möbius invariant function spaces, J. Riene Angew. Math. 363 (1985), 110-145. MR 814017 (87f:30104)
  • [3] -, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1054. MR 970119 (90a:47067)
  • [4] C. A. Berger, L. A. Coburn, and K. H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), 921-953. MR 961500 (89m:32053)
  • [5] D. Békollé, C. Berger, L. Coburn, and K. Zhu, $ BMO$ in the Bergman metric on bounded symmetric domains, J. Funct. Anal. (in press).
  • [6] A. Nagel and W. Rudin, Möbius invariant function spaces on balls and spheres, Duke Math. J. 43 (1976), 841-865. MR 0425178 (54:13135)
  • [7] W. Rudin, Function theory in the unit ball of $ {\mathbb{C}^n}$, Springer-Verlag, New York, 1980. MR 601594 (82i:32002)
  • [8] K. H. Zhu, Hilbert-Schmidt Hankel operators on the Bergman space, Proc. Amer. Math. Soc. (in press). MR 1013987 (90k:47060)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E20, 32A35, 32A40

Retrieve articles in all journals with MSC: 46E20, 32A35, 32A40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-0982233-8
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society