Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

A cubic counterpart of Jacobi's identity and the AGM


Authors: J. M. Borwein and P. B. Borwein
Journal: Trans. Amer. Math. Soc. 323 (1991), 691-701
MSC: Primary 33C75; Secondary 11F11, 11Y60, 33C05
MathSciNet review: 1010408
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We produce exact cubic analogues of Jacobi's celebrated theta function identity and of the arithmetic-geometric mean iteration of Gauss and Legendre. The iteration in question is

$\displaystyle {a_{n + 1}}: = \frac{{{a_n} + 2{b_n}}} {3}\quad {\text{and}}\quad... ...}: = \sqrt[3]{{{b_n}\left( {\frac{{a_n^2 + {a_n}{b_n} + b_n^2}} {3}} \right).}}$

The limit of this iteration is identified in terms of the hypergeometric function $ {}_2{F_1}(1/3,2/3;1; \cdot )$, which supports a particularly simple cubic transformation.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz and I. Stegun, Handbook of mathematical functions, Dover, New York, 1964.
  • [2] Richard Bellman, A brief introduction to theta functions, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York, 1961. MR 0125252 (23 #A2556)
  • [3] R. A. Rankin, Ramanujan’s unpublished work on congruences, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Springer, Berlin, 1977, pp. 3–15. Lecture Notes in Math., Vol. 601. MR 0447084 (56 #5399)
  • [4] Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728 (89a:11134)
  • [5] -, Quadratic mean iterations, (monograph in preparation).
  • [6] -, More Ramanujan-type series for $ 1/\pi $, Ramanujan Revisited, Academic Press, 1988, pp. 359-374.
  • [7] D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 375–472. MR 938975 (89f:11099)
  • [8] G. H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge, England, 1940. MR 0004860 (3,71d)
  • [9] S. Ramanujan, Modular equations and approximations to $ \pi $, Quart. J. Math. 45 (1914), 350-372.
  • [10] J. Tannery and J. Molk, Fonctions elliptiques, Vols. 1 and 2, 1893; republished by Chelsea, New York, 1972.
  • [11] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 33C75, 11F11, 11Y60, 33C05

Retrieve articles in all journals with MSC: 33C75, 11F11, 11Y60, 33C05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1991-1010408-0
PII: S 0002-9947(1991)1010408-0
Keywords: Mean iterations, theta functions, hypergeometric functions, generalised elliptic functions, cubic transformations, pi, Ramanujan
Article copyright: © Copyright 1991 American Mathematical Society