Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A cubic counterpart of Jacobi's identity and the AGM


Authors: J. M. Borwein and P. B. Borwein
Journal: Trans. Amer. Math. Soc. 323 (1991), 691-701
MSC: Primary 33C75; Secondary 11F11, 11Y60, 33C05
DOI: https://doi.org/10.1090/S0002-9947-1991-1010408-0
MathSciNet review: 1010408
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We produce exact cubic analogues of Jacobi's celebrated theta function identity and of the arithmetic-geometric mean iteration of Gauss and Legendre. The iteration in question is

$\displaystyle {a_{n + 1}}: = \frac{{{a_n} + 2{b_n}}} {3}\quad {\text{and}}\quad... ...}: = \sqrt[3]{{{b_n}\left( {\frac{{a_n^2 + {a_n}{b_n} + b_n^2}} {3}} \right).}}$

The limit of this iteration is identified in terms of the hypergeometric function $ {}_2{F_1}(1/3,2/3;1; \cdot )$, which supports a particularly simple cubic transformation.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz and I. Stegun, Handbook of mathematical functions, Dover, New York, 1964.
  • [2] R. Bellman, A brief introduction to theta functions, Holt, Reinhart and Winston, New York, 1961. MR 0125252 (23:A2556)
  • [3] B. C. Berndt, Ramanujan's Second Notebook, Springer-Verlag (to appear). MR 0447084 (56:5399)
  • [4] J. M. Borwein and P. B. Borwein, Pi and the $ AGM$--A study in analytic number theory and computational complexity, Wiley, 1987. MR 877728 (89a:11134)
  • [5] -, Quadratic mean iterations, (monograph in preparation).
  • [6] -, More Ramanujan-type series for $ 1/\pi $, Ramanujan Revisited, Academic Press, 1988, pp. 359-374.
  • [7] D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, Ramanujan Revisited, Academic Press, 1988, pp. 375-472. MR 938975 (89f:11099)
  • [8] G. H. Hardy, Ramanujan, Cambridge Univ. Press, London, 1940. MR 0004860 (3:71d)
  • [9] S. Ramanujan, Modular equations and approximations to $ \pi $, Quart. J. Math. 45 (1914), 350-372.
  • [10] J. Tannery and J. Molk, Fonctions elliptiques, Vols. 1 and 2, 1893; republished by Chelsea, New York, 1972.
  • [11] E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press, London, 1927. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 33C75, 11F11, 11Y60, 33C05

Retrieve articles in all journals with MSC: 33C75, 11F11, 11Y60, 33C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1010408-0
Keywords: Mean iterations, theta functions, hypergeometric functions, generalised elliptic functions, cubic transformations, pi, Ramanujan
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society