Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term


Authors: J. García Azorero and I. Peral Alonso
Journal: Trans. Amer. Math. Soc. 323 (1991), 877-895
MSC: Primary 35J65; Secondary 35B30
DOI: https://doi.org/10.1090/S0002-9947-1991-1083144-2
MathSciNet review: 1083144
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the existence of solutions for the following nonlinear degenerate elliptic problems in a bounded domain $ \Omega \subset {{\mathbf{R}}^N}$

$\displaystyle - \operatorname{div} (\vert\nabla u{\vert^{p - 2}}\nabla u) = \ve... ...{\vert^{{p^{\ast}} - 2}}u + \lambda \vert u{\vert^{q - 2}}u,\qquad \lambda > 0,$

where $ {p^{\ast}}$ is the critical Sobolev exponent, and $ u{\vert _{\delta \Omega }} \equiv 0$. By using critical point methods we obtain the existence of solutions in the following cases:

If $ p < q < {p^{\ast}}$, there exists $ {\lambda _0} > 0$ such that for all $ \lambda > {\lambda _0}$ there exists a nontrivial solution.

If $ \max (p,{p^{\ast}} - p/(p - 1)) < q < {p^{\ast}}$, there exists nontrivial solution for all $ \lambda > 0$.

If $ 1 < q < p$ there exists $ {\lambda _1}$ such that, for $ 0 < \lambda < {\lambda _1}$, there exist infinitely many solutions.

Finally, we obtain a multiplicity result in a noncritical problem when the associated functional is not symmetric.


References [Enhancements On Off] (What's this?)

  • [A] A. Anane, Simplicité et isolation de la première valeur propre du $ p$-laplacien avec poids., C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725-728. MR 920052 (89e:35124)
  • [A-E] J. P. Aubin and I. Ekeland, Applied nonlinear analysis, Wiley, New York, 1984. MR 749753 (87a:58002)
  • [A-P-S] F. V. Atkinson, L. A. Pelletier, and J. Serrin, unpublished work.
  • [B] H. Brézis, Some variational problems with lack of compactness, Proc. Berkeley Sympos. Nonlinear Functional Analysis, 1985.
  • [Ba] G. Barles, Remarks on the uniqueness results of the first eigenvalue of the $ p$-Laplacian, Ann. de Toulouse (to appear).
  • [Be] V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), 533-572. MR 675067 (84c:58014)
  • [B-F] V. Benci and D. Fortunato, Bifurcation from the essential spectrum for odd variational operators, Confer. Sem. Mat. Univ. Bari 178 (1981). MR 641108 (83b:58025)
  • [Bha] T. Bhattacharya, Radial symmetry of the first eigenfunction for the $ p$-laplacian in the ball, Preprint.
  • [B-N] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. MR 709644 (84h:35059)
  • [B-O] H. Brézis and L. Oswald, Remarks on sublinear elliptic equations, Inst. Math. Appl. Preprint Ser. 112 (1984).
  • [DiB] E. Di Benedetto, $ {C^{1,\alpha }}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850. MR 709038 (85d:35037)
  • [D-S] I. Diaz and J. E. Saa, Uniqueness of nonnegative solutions for elliptic nonlinear diffusion equations with a general perturbation term, Proc. VII CEDYA, Santander, 1985.
  • [E] H. Egnell, Existence and nonexistence results for $ m$-laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal. 104 (1988), 57-77. MR 956567 (90e:35069)
  • [G-P.1] J. Garcia Azorero and I. Peral Alonso, Existence and non-uniqueness for the $ p$-laplacian: Nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), 1389-1430. MR 912211 (89e:35058)
  • [G-P.2] -, Comportement asymptotique des valeurs propres du $ p$-laplacien, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 75-78. MR 954263 (89k:35171)
  • [G-V] M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents (to appear). MR 1009077 (90h:35100)
  • [L1] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 1, Rev. Mat. Iberoamericana 1 (1985), 145-201. MR 834360 (87c:49007)
  • [L2] -, The concentration-compactness principle in the calculus of variations. The limit case, part 2, Rev. Mat. Iberoamericana 1 (1985), 45-121. MR 850686 (87j:49012)
  • [O] M. Otani, Existence and nonexistence of nontrivial solutions of some nonlinear degenerate equations, J. Funct. Anal. 76 (1988), 140-159. MR 923049 (89c:35067)
  • [P-S] P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), 681-703. MR 855181 (88b:35072)
  • [R1] P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc. 272 (1982). MR 662065 (83k:35037)
  • [R2] -, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., no. 65, Amer. Math. Soc., Providence, R.I., 1986. MR 845785 (87j:58024)
  • [T] P. Tolksdorff, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150. MR 727034 (85g:35047)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J65, 35B30

Retrieve articles in all journals with MSC: 35J65, 35B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1083144-2
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society