Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Maximal representations of surface groups in bounded symmetric domains


Author: Luis Hernández
Journal: Trans. Amer. Math. Soc. 324 (1991), 405-420
MSC: Primary 32M15; Secondary 22E40
DOI: https://doi.org/10.1090/S0002-9947-1991-1033234-5
MathSciNet review: 1033234
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Gamma$ be the fundamental group of a hyperbolic surface of genus $ g$; for $ 1 \le p \le q,PSU(p,q)$ is the group of isometries of a certain Hermitian symmetric space $ {D_{p,q}}$ of rank $ p$. There exists a characteristic number $ c:\operatorname{Hom} (\Gamma ,PSU(p,q)) \to \mathbb{R}$, which is constant on each connected component and such that $ \vert c(\rho )\vert \leq 4p\pi (g - 1)$ for every representation $ \rho$. We show that representations with maximal characteristic number (plus some nondegeneracy condition if $ p > 2$ leave invariant a totally geodesic subspace of $ {D_{p,q}}$ isometric to $ {D_{p,p}}$.


References [Enhancements On Off] (What's this?)

  • [C] K. Corlette, Rigid representations of Kählerian fundamental groups, Preprint. MR 1085142 (91k:32018)
  • [DT] A. Domic and D. Toledo, The Gromov norm of the Kähler class of symmetric domains, Math. Ann. 276 (1987), 425-432. MR 875338 (88e:32057)
  • [Go1] W. Goldman, Discontinuous groups and the Euler class, Doctoral Dissertation, University of California, Berkeley.
  • [Go2] -, Representations of fundamental groups of surfaces, Lecture Notes in Math., vol. 1167, Springer, 1985, pp. 95-117. MR 827264 (87j:32068)
  • [Gr] M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982). MR 686042 (84h:53053)
  • [K] H. Kneser, Die kleinste Bedeckungszahl innerhalb einer Klasse von Flächenabbildungen, Math. Ann. 103 (1930), 347-358. MR 1512626
  • [M] J. W. Milnor, On the existence of a connection with curvature zero, Comment Math. Helv. 32 (1957), 216-223. MR 0095518 (20:2020)
  • [NS] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), 540-567. MR 0184252 (32:1725)
  • [P] I. I. Pyatetskii-Shapiro, Automorphic functions and the geometry of classical domains, Gordon and Breach, World Science Publishers, 1969. MR 0252690 (40:5908)
  • [Th] W. Thurston, The geometry and topology of $ 3$-manifolds, Princeton University notes.
  • [To] D. Toledo, Representations of surface groups in $ PSU(1,n)$ with maximum characteristic number, J. Differential Geom. 29 (1989), 125-134. MR 978081 (90a:57016)
  • [Wd] J. W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 51 (1976), 183-199. MR 0293655 (45:2732)
  • [Wf] J. Wolf, Fine structure of Hermitian symmetric spaces, Symmetric Spaces (W. Boothby and G. Weiss, eds.), Marcel Dekker, New York, 1972. MR 0404716 (53:8516)
  • [Z] R. J. Zimmer, Ergodic theory and semi-simple groups, Birkhäuser, Boston, Mass., 1984.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32M15, 22E40

Retrieve articles in all journals with MSC: 32M15, 22E40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1033234-5
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society