Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Infinitesimal rigidity for the action of $ {\rm SL}(n,{\bf Z})$ on $ {\bf T}\sp n$

Author: James W. Lewis
Journal: Trans. Amer. Math. Soc. 324 (1991), 421-445
MSC: Primary 22E40
MathSciNet review: 1058434
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Gamma = {\mathbf{SL}}(n,\mathbb{Z})$ or any subgroup of finite index. Then the action of $ \Gamma$ on $ {\mathbb{T}^n}$ by automorphisms is infinitesimally rigid for $ n \ge 7$, i.e., the cohomology $ {\text{H}^1}(\Gamma ,\operatorname{Vec} ({\mathbb{T}^n})) = 0$, where $ \operatorname{Vec} ({\mathbb{T}^n})$ denotes the module of $ {C^\infty }$ vector fields on $ {\mathbb{T}^n}$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E40

Retrieve articles in all journals with MSC: 22E40

Additional Information

PII: S 0002-9947(1991)1058434-X
Article copyright: © Copyright 1991 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia