Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Construction of units in integral group rings of finite nilpotent groups


Authors: Jürgen Ritter and Sudarshan K. Sehgal
Journal: Trans. Amer. Math. Soc. 324 (1991), 603-621
MSC: Primary 20C05; Secondary 16S34, 16U60
MathSciNet review: 987166
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ U$ be the group of units of the integral group ring of a finite group $ G$. We give a set of generators of a subgroup $ B$ of $ U$. This subgroup is of finite index in $ U$ if $ G$ is an odd nilpotent group. We also give an example of a $ 2$-group such that $ B$ is of infinite index in $ U$.


References [Enhancements On Off] (What's this?)

  • [1] Anthony Bak, Subgroups of the general linear group normalized by relative elementary groups, Algebraic 𝐾-theory, Part II (Oberwolfach, 1980) Lecture Notes in Math., vol. 967, Springer, Berlin-New York, 1982, pp. 1–22. MR 689387
  • [2] Hyman Bass, The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups, Topology 4 (1965), 391–410. MR 0193120
  • [3] H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for 𝑆𝐿_{𝑛}(𝑛≥3) and 𝑆𝑝_{2𝑛}(𝑛≥2), Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59–137. MR 0244257
  • [4] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR 0144979
  • [5] G. Frobenius and I. Schur, Über die reellen Darstellungen der endlichen Gruppen, Sitz. Ber. Preuss. Akad. Wiss. (1906), 209-217.
  • [6] Marshall Hall Jr., The theory of groups, The Macmillan Co., New York, N.Y., 1959. MR 0103215
  • [7] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
  • [8] Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
  • [9] Bernhard Liehl, On the group 𝑆𝐿₂ over orders of arithmetic type, J. Reine Angew. Math. 323 (1981), 153–171. MR 611449, 10.1515/crll.1981.323.153
  • [10] Morris Newman, Integral matrices, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 45. MR 0340283
  • [11] Jürgen Ritter and Sudarshan K. Sehgal, Certain normal subgroups of units in group rings, J. Reine Angew. Math. 381 (1987), 214–220. MR 918851
  • [12] -, Generators of subgroups of $ U(\mathbb{Z}G)$; preprint (submitted to Contemp. Math.).
  • [13] Klaus Roggenkamp and Leonard Scott, Isomorphisms of 𝑝-adic group rings, Ann. of Math. (2) 126 (1987), no. 3, 593–647. MR 916720, 10.2307/1971362
  • [14] Peter Roquette, Realisierung von Darstellungen endlicher nilpotenter Gruppen, Arch. Math. (Basel) 9 (1958), 241–250 (German). MR 0097452
  • [15] Jean-Pierre Serre, Le problème des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970), 489–527 (French). MR 0272790
  • [16] L. N. Vaserstein, On the group $ S{L_2}$ over Dedekind rings of arithmetic type, Math. USSR-Sb. 18 (1973), 321-332.
  • [17] -, The structure of classic arithmetic groups of rank greater than one, Math. USSR-Sb. 20 (1973), 465-492.
  • [18] Alfred Weiss, Rigidity of 𝑝-adic 𝑝-torsion, Ann. of Math. (2) 127 (1988), no. 2, 317–332. MR 932300, 10.2307/2007056

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20C05, 16S34, 16U60

Retrieve articles in all journals with MSC: 20C05, 16S34, 16U60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1991-0987166-9
Article copyright: © Copyright 1991 American Mathematical Society