Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On certain partial differential operators of finite odd type


Author: A. Alexandrou Himonas
Journal: Trans. Amer. Math. Soc. 324 (1991), 889-900
MSC: Primary 35H05; Secondary 35A27
DOI: https://doi.org/10.1090/S0002-9947-1991-1055570-9
MathSciNet review: 1055570
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ P$ be a linear partial differential operator of order $ m \geqslant 1$ with real-analytic coefficients defined in $ \Omega $, an open set of $ {\mathbb{R}^n}$, and let $ \gamma $ be in the cotangent space of $ \Omega $ minus the zero section. If $ P$ is of odd finite type $ k$ and if the Hörmander numbers are $ 1 = {k_1} < {k_2},{k_2}$ odd, then $ P$ is analytic hypoelliptic at $ \gamma $. These operators are not semirigid.


References [Enhancements On Off] (What's this?)

  • [1] M. S. Baouendi and L. P. Rothschild, Cauchy-Riemann functions on manifolds of higher codimension in complex space, preprint, 1989. MR 1055709 (91j:32020)
  • [2] -, Normal forms for generic manifolds and holomorphic extension of $ CR$ functions, J. Differential Geom. 25 (1987), 431-467. MR 882830 (88m:32039)
  • [3] M. S. Baouendi, L. P. Rothschild, and F. Treves, $ CR$ structures with group action and extendability of $ CR$ functions, Invent. Math. 82 (1985), 359-467. MR 809720 (87i:32028)
  • [4] Y. V. Egorov, Subelliptic pseudo-differential operators, Dokl. Akad. Nauk SSSR 188 (1969), 20-22. MR 0255970 (41:630)
  • [5] A. A. Himonas, On analytic microlocal hypoellipticity of linear partial differential operators of principal type, Comm. Partial Differential Equations 11 (1986), 1539-1574. MR 864417 (88a:35052)
  • [6] -, Semirigid partial differential operators and microlocal analytic hypoellipticity, Duke Math. J. 59 (1989), 265-287. MR 1016887 (91a:35006)
  • [7] L. Hörmander, Subelliptic operators, Ann. of Math. Studies, no. 91, Princeton Univ. Press, Princeton, N.J., 1979, pp. 127-208. MR 547019 (82e:35029)
  • [8] J. J. Kohn, Boundary behavior of $ \overline \partial $ on weakly pseudoconvex manifolds of dimension two, J. Differential Geom. 6 (1972), 523-542. MR 0322365 (48:727)
  • [9] J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95, Soc. Math. France, 1982. MR 699623 (84m:58151)
  • [10] A. E. Tumanov, Extending $ CR$ functions on manifolds of finite type to a wedge, Mat. Sb. 136 (1988), 128-139. (Russian)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35H05, 35A27

Retrieve articles in all journals with MSC: 35H05, 35A27


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1055570-9
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society