Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Random products of contractions in Banach spaces


Authors: J. Dye, M. A. Khamsi and S. Reich
Journal: Trans. Amer. Math. Soc. 325 (1991), 87-99
MSC: Primary 47A05; Secondary 65J10
DOI: https://doi.org/10.1090/S0002-9947-1991-0989572-5
MathSciNet review: 989572
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the random product of a finite number of $ (W)$ contractions converges weakly in all smooth reflexive Banach spaces. If one of the contractions is compact, then the convergence is uniform.


References [Enhancements On Off] (What's this?)

  • [1] I. Amemiya and T. Ando, Convergence of random products of contractions in Hilbert space, Acta Sci. Math. (Szeged) 26 (1965), 239-244. MR 0187116 (32:4570)
  • [2] F. E. Browder, On some approximation methods for solutions of the Dirichlet problem for linear elliptic equations of arbitrary order, J. Math. Mech. 7 (1958), 69-80. MR 0092070 (19:1057a)
  • [3] R. E. Bruck, Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251-262. MR 0324491 (48:2843)
  • [4] -, Random products of contractions in metric and Banach spaces, J. Math. Anal. Appl. 88 (1982), 319-332. MR 667060 (84a:47075)
  • [5] -, Asymptotic behavior of nonexpansive mappings, Contemp. Math. 18 (1983), 1-47. MR 728592 (85d:47057)
  • [6] R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), 459-470. MR 0470761 (57:10507)
  • [7] J. Dye, Convergence of random products of compact contractions in Hilbert space, Integral Equations Operator Theory 12 (1989), 12-22. MR 973044 (90c:47013)
  • [8] -, A generalization of a theorem of Amemiya and Ando on the convergence of random products of contractions in Hilbert space, Integral Equations Operator Theory 12 (1989), 155-162. MR 986593 (90b:47067)
  • [9] C. Franchetti and W. Light, The alternating algorithm in uniformly convex spaces, J. London Math. Soc. 29 (1984), 545-555. MR 754940 (85h:41064)
  • [10] I. Halperin, The product of projection operators, Acta Sci. Math. (Szeged) 23 (1962), 96-99. MR 0141978 (25:5373)
  • [11] C. Hamaker and D. C. Solmon, The angles between the null spaces of $ X$-rays, J. Math. Anal. Appl. 62 (1978), 1-23. MR 0463859 (57:3798)
  • [12] U. Krengel, Ergodic theorems, De Gruyter, Berlin, 1985. MR 797411 (87i:28001)
  • [13] T C. Lim, Asymptotic centers and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980), 135-143. MR 599326 (82h:47052)
  • [14] P. L. Lions, On the Schwarz alternating method. I, Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, Pa., 1988, pp. 1-42. MR 972510 (90a:65248)
  • [15] S. Reich, Product formulas, nonlinear semigroups and accretive operators, J. Funct. Anal. 36 (1980), 147-168. MR 569251 (81k:47076)
  • [16] -, Nonlinear semigroups, accretive operators and applications, Nonlinear Phenomena in Mathematical Sciences, Academic Press, New York, 1982, pp. 831-838. MR 728043 (85c:47060)
  • [17] -, A limit theorem for projections, Linear and Multilinear Algebra 13 (1983), 281-290. MR 700890 (84i:47070)
  • [18] K. T. Smith, D. C. Solmon, and S. L. Wagner, Practical and mathematical aspects of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977), 1227-1270. MR 0490032 (58:9394a)
  • [19] J. E. Spingarn, A projection method for least-squares solutions to over-determined systems of linear inequalities, Linear Algebra Appl. 86 (1987), 211-236. MR 870941 (88k:65058)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A05, 65J10

Retrieve articles in all journals with MSC: 47A05, 65J10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-0989572-5
Keywords: Contraction, random product, weak convergence
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society