Random products of contractions in Banach spaces

Authors:
J. Dye, M. A. Khamsi and S. Reich

Journal:
Trans. Amer. Math. Soc. **325** (1991), 87-99

MSC:
Primary 47A05; Secondary 65J10

DOI:
https://doi.org/10.1090/S0002-9947-1991-0989572-5

MathSciNet review:
989572

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the random product of a finite number of contractions converges weakly in all smooth reflexive Banach spaces. If one of the contractions is compact, then the convergence is uniform.

**[1]**I. Amemiya and T. Andô,*Convergence of random products of contractions in Hilbert space*, Acta Sci. Math. (Szeged)**26**(1965), 239–244. MR**0187116****[2]**Felix E. Browder,*On some approximation methods for solutions of the Dirichlet problem for linear elliptic equations of arbitrary order*, J. Math. Mech.**7**(1958), 69–80. MR**0092070****[3]**Ronald E. Bruck Jr.,*Properties of fixed-point sets of nonexpansive mappings in Banach spaces*, Trans. Amer. Math. Soc.**179**(1973), 251–262. MR**0324491**, https://doi.org/10.1090/S0002-9947-1973-0324491-8**[4]**Ronald E. Bruck,*Random products of contractions in metric and Banach spaces*, J. Math. Anal. Appl.**88**(1982), no. 2, 319–332. MR**667060**, https://doi.org/10.1016/0022-247X(82)90195-0**[5]**Ronald E. Bruck,*Asymptotic behavior of nonexpansive mappings*, Fixed points and nonexpansive mappings (Cincinnati, Ohio, 1982) Contemp. Math., vol. 18, Amer. Math. Soc., Providence, RI, 1983, pp. 1–47. MR**728592**, https://doi.org/10.1090/conm/018/728592**[6]**Ronald E. Bruck and Simeon Reich,*Nonexpansive projections and resolvents of accretive operators in Banach spaces*, Houston J. Math.**3**(1977), no. 4, 459–470. MR**0470761****[7]**John Dye,*Convergence of random products of compact contractions in Hilbert space*, Integral Equations Operator Theory**12**(1989), no. 1, 12–22. MR**973044**, https://doi.org/10.1007/BF01199754**[8]**John Dye,*A generalization of a theorem of Amemiya and Ando on the convergence of random products of contractions in Hilbert space*, Integral Equations Operator Theory**12**(1989), no. 2, 155–162. MR**986593**, https://doi.org/10.1007/BF01195112**[9]**C. Franchetti and W. Light,*The alternating algorithm in uniformly convex spaces*, J. London Math. Soc. (2)**29**(1984), no. 3, 545–555. MR**754940**, https://doi.org/10.1112/jlms/s2-29.3.545**[10]**Israel Halperin,*The product of projection operators*, Acta Sci. Math. (Szeged)**23**(1962), 96–99. MR**0141978****[11]**C. Hamaker and D. C. Solmon,*The angles between the null spaces of Xrays*, J. Math. Anal. Appl.**62**(1978), no. 1, 1–23. MR**0463859**, https://doi.org/10.1016/0022-247X(78)90214-7**[12]**Ulrich Krengel,*Ergodic theorems*, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR**797411****[13]**Teck Cheong Lim,*Asymptotic centers and nonexpansive mappings in conjugate Banach spaces*, Pacific J. Math.**90**(1980), no. 1, 135–143. MR**599326****[14]**P.-L. Lions,*On the Schwarz alternating method. I*, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988, pp. 1–42. MR**972510****[15]**Simeon Reich,*Product formulas, nonlinear semigroups, and accretive operators*, J. Funct. Anal.**36**(1980), no. 2, 147–168. MR**569251**, https://doi.org/10.1016/0022-1236(80)90097-X**[16]**Simeon Reich,*Nonlinear semigroups, accretive operators, and applications*, Nonlinear phenomena in mathematical sciences (Arlington, Tex., 1980) Academic Press, New York, 1982, pp. 831–838. MR**728043****[17]**Simeon Reich,*A limit theorem for projections*, Linear and Multilinear Algebra**13**(1983), no. 3, 281–290. MR**700890**, https://doi.org/10.1080/03081088308817526**[18]**Kennan T. Smith, Donald C. Solmon, and Sheldon L. Wagner,*Practical and mathematical aspects of the problem of reconstructing objects from radiographs*, Bull. Amer. Math. Soc.**83**(1977), no. 6, 1227–1270. MR**0490032**, https://doi.org/10.1090/S0002-9904-1977-14406-6**[19]**Jonathan E. Spingarn,*A projection method for least-squares solutions to overdetermined systems of linear inequalities*, Linear Algebra Appl.**86**(1987), 211–236. MR**870941**, https://doi.org/10.1016/0024-3795(87)90296-5

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
47A05,
65J10

Retrieve articles in all journals with MSC: 47A05, 65J10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-0989572-5

Keywords:
Contraction,
random product,
weak convergence

Article copyright:
© Copyright 1991
American Mathematical Society