Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hamilton-Jacobi equations with singular boundary conditions on a free boundary and applications to differential games


Authors: Martino Bardi and Pierpaolo Soravia
Journal: Trans. Amer. Math. Soc. 325 (1991), 205-229
MSC: Primary 49L10; Secondary 90D25
DOI: https://doi.org/10.1090/S0002-9947-1991-0991958-X
MathSciNet review: 991958
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A class of Hamilton-Jacobi equations arising in generalized timeoptimal control problems and differential games is considered. The natural global boundary value problem for these equations has a singular boundary condition on a free boundary. The uniqueness of the continuous solution and of the free boundary is proved in the framework of viscosity solutions. A local uniqueness theorem is also given, as well as some existence results and several applications to control and game theory. In particular a relaxation theorem (weak form of the bang-bang principle) is proved for a class of nonlinear differential games.


References [Enhancements On Off] (What's this?)

  • [1] A. Bacciotti, Sulla continuità della funzione tempo minimo, Boll. Un. Mat. Ital. B 15 (1978), 859-868.
  • [2] -, Linear systems with piecewise constant controls, Boll. Un. Mat. Ital. A 18 (1981), 102-105. MR 607210 (82b:49056)
  • [3] -, Fondamenti geometrici della teoria della controllabilità, Quad. Unione Mat. Italiana, vol. 31, Pitagora, Bologna, 1985.
  • [4] M. Bardi, A boundary value problem for the minimum time function, SIAM J. Control 27 (1989), 776-785. MR 1001919 (90i:49034)
  • [5] M. Bardi and M. Falcone, An approximation scheme for the minimum time function, SIAM J. Control 28 (1990), 950-965. MR 1051632 (91d:49029)
  • [6] -, (in preparation).
  • [7] M. Bardi and P. Soravia, A $ PDE$ framework for differential games of pursuit-evasion type, in Differential Games and Applications (T. Basar and P. Bernhard, eds.), Lecture Notes in Control and Inform. Sci. 144, Springer-Verlag, 1990, pp. 62-71. MR 1230190
  • [8] G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Modél. Math. Anal. Numér. 21 (1987), 557-579. MR 921827 (88k:49032)
  • [9] E. N. Barron, L. C. Evans and R. Jensen, Viscosity solutions of Isaacs'equations and differential games with Lipschitz controls, J. Differential Equations 53 (1984), 213-233. MR 748240 (85k:90173)
  • [10] T. Basar and G. J. Olsder, Dynamic non-cooperative game theory, Academic Press, New York, 1982. MR 649247 (83i:90169)
  • [11] L. D. Berkovitz, Differential games of generalized pursuit and evasion, SIAM J. Control 24 (1986), 361-373. MR 838045 (87i:90370)
  • [12] -, Characterization of the values of differential games, Appl. Math. Optim. 17 (1988), 177-183. MR 910948 (89f:90215)
  • [13] A. Bressan, Sulla funzione tempo minimo nei sistemi nonlineari, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. la 66 (1979), 383-388. MR 606442 (82d:49033)
  • [14] P. Cannarsa and H. M. Soner, On the singularities of viscosity solutions to Hamilton-Jacobi-Bellmann equations, Indiana Univ. Math. J. 36 (1987), 501-524. MR 905608 (89m:35044)
  • [15] I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim. 11 (1984), 161-181. MR 743925 (85f:49046)
  • [16] C. Caratheodory, Calculus of variations and partial differential equations of the first order, 2nd english ed., Chelsea, New York, 1982.
  • [17] M. C. Crandall, L. C. Evans, and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), 487-502. MR 732102 (86a:35031)
  • [18] M. C. Crandall, H. Ishii and P. L. Lions, Uniqueness of viscosity solutions revisited, J. Math. Soc. Japan 39 (1987), 581-596. MR 905626 (88k:35038)
  • [19] M. C. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42. MR 690039 (85g:35029)
  • [20] R. J. Elliott and N. J. Kalton, The existence of value in differential games, Mem. Amer. Math. Soc. No. 126(1972). MR 0359845 (50:12297)
  • [21] L. C. Evans and H. Ishii, Differential games and nonlinear first order $ PDE$ on bounded domains, Manuscripta Math. 49 (1984), 109-139. MR 767202 (86f:35048)
  • [22] L. C. Evans and M. R. James, The Hamilton-Jacobi-Bellman equation for time-optimal control, SIAM J. Control 27 (1989), 1477-1489. MR 1022439 (90j:49020)
  • [23] L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J. 33 (1984), 773-797. MR 756158 (86d:90185)
  • [24] W. Fleming, The convergence problem for differential games, J. Math. Anal. Appl. 3 (1961), 102-116. MR 0142414 (25:5806)
  • [25] A. Friedman, Differential games, Wiley, New York, 1971. MR 0421700 (54:9696)
  • [26] E. Giusti, On the equation of surfaces of prescribed mean curvature, Invent. Math. 46 (1978), 111-137. MR 0487722 (58:7337)
  • [27] O. Hajek, Pursuit games, Academic Press, New York, 1975. MR 0456557 (56:14781)
  • [28] H. Hermes, Feedback synthesis and positive, local solutions to Hamilton-Jacobi-Bellman equations, Analysis and Control of Nonlinear Systems (C. I. Byrnes, C. F. Martin and R. E. Saecks, eds.), North-Holland, Amsterdam, 1988, pp. 155-164.
  • [29] H. Hermes and J. P. LaSalle, Functional analysis and time optimal control, Academic Press, New York, 1969. MR 0420366 (54:8380)
  • [30] R. Isaacs, Differential games, Wiley, New York, 1965. MR 0210469 (35:1362)
  • [31] H. Ishii, Uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J. 33 (1984), 721-748. MR 756156 (85h:35057)
  • [32] -, Perron's method for Hamilton-Jacobi equations, Duke Math. J. 55 (1987), 369-384. MR 894587 (89a:35053)
  • [33] -, Representation of solutions of Hamilton-Jacobi equations, Nonlinear Anal. T.M.A. 12 (1988), 121-146. MR 926208 (89f:49030)
  • [34] -, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), 105-135. MR 1056130 (91f:35071)
  • [35] N. Krassovski and A. Soubbotine, Jeux différentiels, Mir, Moscow, 1977. MR 0456560 (56:14784)
  • [36] S. N. Kruzkov, Generalized solutions of the Hamilton-Jacobi equations of the eikonal type. I, Math. USSR-Sb. 27 (1975), 406-445.
  • [37] J. P. LaSalle, The time-optimal control problem, in Theory of Non-Linear Oscillations, vol. 5, Princeton Univ. Press, Princeton, N.J., 1958, pp. 1-24. MR 0145169 (26:2704)
  • [38] P. L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman, Boston, 1982. MR 667669 (84a:49038)
  • [39] P. L. Lions and P. E. Souganidis, Differential games, optimal control and directional derivatives of viscosity solutions of Bellman's and Isaacs' equations, SIAM J. Control 23 (1985), 566-583. MR 791888 (87c:49038)
  • [40] P. Loreti, Some properties of constrained viscosity solutions of Hamilton-Jacobi equations, SIAM J. Control 25 (1987), 1244-1252. MR 905043 (88g:49028)
  • [41] N. N. Petrov, Controllability of autonomous systems, Differential Equations 4 (1968), 311-317. MR 0228798 (37:4377)
  • [42] H. M. Soner, Optimal control problems with state-space constraints, I & II, SIAM J. Control 24 (1987), 551-561 and 1110-1122.
  • [43] P. E. Souganidis, Max-min representations and product formulas for the viscosity solutions of Hamilton-Jacobi equations with applications to differential games, Nonlinear Anal. T.M.A. 9 (1985), 217-257. MR 784388 (86f:35049)
  • [44] N. N. Subbotina, A. I. Subbotin and V. E. Tret'jakov, Stochastic and deterministic control. Differential inequalities, Problems Control Inform. Theory 14 (1985), 405-419. MR 836717 (87k:49041)
  • [45] A. I. Subbotin and A. M. Tarasyev, Stability properties of the value function of a differential game and viscosity solutions of Hamilton-Jacobi equations, Problems Control Inform. Theory 15 (1986), 457-463. MR 887279 (88e:49058)
  • [46] H. Sussmann, A general theorem on local controllability, SIAM J. Control 25 (1987), 158-194. MR 872457 (88f:93025)
  • [47] A. Bressan, On a bang-bang principle for nonlinear systems, Suppl. Boll. Un. Mat. Ital. 1 (1980), 53-59. MR 677691 (84h:49019)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49L10, 90D25

Retrieve articles in all journals with MSC: 49L10, 90D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-0991958-X
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society