Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On completing unimodular polynomial vectors of length three


Author: Ravi A. Rao
Journal: Trans. Amer. Math. Soc. 325 (1991), 231-239
MSC: Primary 13C10; Secondary 19A13
DOI: https://doi.org/10.1090/S0002-9947-1991-0991967-0
MathSciNet review: 991967
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if $ R$ is a local ring of dimension three, with $ \frac{1} {2} \in R$, then a polynomial three vector $ ({v_0}(X),{v_1}(X),{v_2}(X))$ over $ R[X]$ can be completed to an invertible matrix if and only if it is unimodular. In particular, if $ 1/3! \in R$, then every stably free projective $ R[{X_1}, \ldots ,{X_n}]$-module is free.


References [Enhancements On Off] (What's this?)

  • [1] S. K. Gupta and M. P. Murthy, Suslin's work on linear groups over polynomial rings and Serre problem, Indian Statistical Institute, New Delhi.
  • [2] R. A. Rao, Two examples of the Bass-Quillen-Suslin conjectures, Math. Ann. 279 (1987), 227-238. MR 919503 (88j:13019)
  • [3] -, The Bass-Quillen conjecture in dimension three but characteristic $ \ne 2,3$ via a question of A. Suslin, Invent. Math. 93 (1988), 609-618. MR 952284 (89d:13011)
  • [4] M. Roitman, On unimodular rows, Proc. Amer. Math. Soc. 95 (1985), 184-188. MR 801320 (87f:13012)
  • [5] -, On stably extended projective modules over polynomial rings, Proc. Amer. Math. Soc. 97 (1986), 585-589. MR 845969 (87f:13007)
  • [6] A. Suslin, On stably free modules, Math. USSR-Sb. 31 (1977), 479-491. MR 0441949 (56:340)
  • [7] -, On the structure of the special linear group over polynomial rings, Math. USSR-Izv. 11 (1977), 221-238.
  • [8] A. Suslin and L. N. Vaserstein, Serre's problem on projective modules over polynomial rings and algebraic $ K$-theory, Math. USSR-Izv. 10 (1976), 937-1001.
  • [9] W. Van der Kallen, A group structure on certain orbit sets of unimodular rows, J. Algebra 82 (1983), 363-397. MR 704762 (85b:13014)
  • [10] L. N. Vaserstein, Operations on orbits of unimodular vectors, J. Algebra 100 (1986), 456-461. MR 840588 (87j:13018)
  • [11] -, Computation of $ {K_1}$ via Mennicke symbols, Comm. Algebra 15 (1987), 611-656. MR 882801 (88m:18019)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13C10, 19A13

Retrieve articles in all journals with MSC: 13C10, 19A13


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-0991967-0
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society