Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

New results on the Pompeiu problem


Authors: Nicola Garofalo and Fausto Segàla
Journal: Trans. Amer. Math. Soc. 325 (1991), 273-286
MSC: Primary 35R30; Secondary 31B20, 35J05
DOI: https://doi.org/10.1090/S0002-9947-1991-0994165-X
MathSciNet review: 994165
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {p_N}(w) = \sum\nolimits_{k = 0}^N {{a_k}{w^k}} $, $ w \in \mathbb{C}$, $ N \in \mathbb{N}$, be a polynomial with complex coefficients. In this paper we prove that if $ D \subset {\mathbb{R}^2}$ is a simply-connected bounded open set whose boundary is a closed, simple curve parametrized by $ x(s) = {x_1}(s) + i{x_2}(s) = {p_N}({e^{is}})$, $ s \in [ - \pi ,\pi ]$, then $ D$ has the Pompeiu property unless $ N = 1$ and $ {p_1}(w) = {a_1}w + {a_2}$ in which case $ D$ is a disk. This result supports the conjecture that modulo sets of zero two-dimensional Lebesgue measure, the disk is the only simply-connected, bounded open set which fails to have the Pompeiu property.


References [Enhancements On Off] (What's this?)

  • [B] C. A. Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem, J. Analyse Math. 37 (1980), 128-144. MR 583635 (82b:35031)
  • [BK] L. Brown and J. P. Kahane, A note on the Pompeiu problem for convex domains, Math. Ann. 259 (1982), 107-110. MR 656655 (83g:42013)
  • [BST] L. Brown, B. M. Schreiber and A. B. Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier (Grenoble) 23 (1973), 125-154. MR 0352492 (50:4979)
  • [C] L. A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math. 139 (1977), 155-184. MR 0454350 (56:12601)
  • [Ch] L. Chakalov, Sur un problème de D. Pompeiu, Ann. Univ. Sofia Fac. Phys. Math. 40 (1944), 1-44. MR 0031980 (11:236e)
  • [P1] D. Pompeiu, Sur certains systèmes d'équations linéaires et sur une propriété intégrale des fonctions de plusieurs variables, C. R. Acad. Sci. Paris 188 (1929), 1.138-1.139.
  • [P2] -, Sur une propriété intégrales des fonctions de deux variables réelles, Bull. Sci. Acad. Royale Belgique 15 (1929), 265-269.
  • [R] B. Riemann, Sullo svolgimento del quoziente di due serie ipergeometriche in funzione continua infinita, Complete Works, Dover, New York, 1953.
  • [W1] S. A. Williams, A partial solution of the Pompeiu problem, Math. Ann. 223 (1976), 183-190. MR 0414904 (54:2996)
  • [W2] -, Analyticity of the boundary for Lipschitz domains without the Pompeiu property, Indiana Univ. Math. J. 30 (1981), 357-369. MR 611225 (82j:31009)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35R30, 31B20, 35J05

Retrieve articles in all journals with MSC: 35R30, 31B20, 35J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-0994165-X
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society