Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the convergence of moment problems


Authors: J. M. Borwein and A. S. Lewis
Journal: Trans. Amer. Math. Soc. 325 (1991), 249-271
MSC: Primary 44A60; Secondary 90C90
DOI: https://doi.org/10.1090/S0002-9947-1991-1008695-8
MathSciNet review: 1008695
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the problem of estimating a nonnegative density, given a finite number of moments. Such problems arise in numerous practical applications. As the number of moments increases, the estimates will always converge weak$ ^\ast $ as measures, but need not converge weakly in $ {L_1}$. This is related to the existence of functions on a compact metric space which are not essentially Riemann integrable (in some suitable sense). We characterize the type of weak convergence we can expect in terms of Riemann integrability, and in some cases give error bounds. When the estimates are chosen to minimize an objective function with weakly compact level sets (such as the Bolzmann-Shannon entropy) they will converge weakly in $ {L_1}$. When an $ {L_p}$ norm $ (1 < p < \infty)$ is used as the objective, the estimates actually converge in norm. These results provide theoretical support to the growing popularity of such methods in practice.


References [Enhancements On Off] (What's this?)

  • [R] B. Ash, 1972: Measure, integration, and functional analysis, Academic Press, New York. MR 0435321 (55:8281)
  • [G] A. Baker and P. Graves-Morris, 1980: Pade approximants, Addison-Wesley, Reading, Mass.
  • [A] Bèn-Tal, J. M. Borwein, and M. Teboulle, 1988(a): A dual approach to multidimensional $ {L_p}$ spectral estimation problems, SIAM J. Control Optim. 26, 985-996. MR 948654 (89i:49008)
  • 1. -, 1988(b): Spectral estimation via convex programming (to appear).
  • [J] M. Borwein, 1983: Semi-infinite programming duality: how special is it?, in Semi-Infinite Programming and Applications (A. V. Fiacco and K. O. Kortanek, eds.), Springer-Verlag, Berlin. MR 709266 (84g:49057)
  • [J] M. Borwein and A. S. Lewis, 1988(a): Partially finite convex programming, Parts I and II, Math. Programming (to appear).
  • 2. -, 1988(b): Duality relationships for entropy-like minimization problems, SIAM J. Control. Optim. (to appear). MR 1092730 (92c:49027)
  • [J] P. Burg, 1975: Maximum entropy spectral analysis, Ph. D. dissertation, Stanford University, Stanford, Calif.
  • [E] W. Cheney, 1966: Introduction to approximation theory, McGraw-Hill, New York. MR 0222517 (36:5568)
  • [M] M. Day, 1962: Normed linear spaces, Academic Press, New York. MR 0145316 (26:2847)
  • [N] Dunford and J. T. Schwartz, 1958: Linear operators, Part I, Interscience, New York.
  • [B] Forte, W. Hughes and Z. Pales, 1989: Maximum entropy estimators and the problem of moments, Rend. Mat. (7) 9, 689-699. MR 1056231 (91f:94009)
  • [B] K. Goodrich and A. Steinhardt, 1986: $ {L_2}$ spectral estimation, SIAM J. Appl. Math. 46, 417-428.
  • [F] Hausdorff, 1921: Summationsmethoden und momentfolgen. I, Math. Z. 9, 74-109. MR 1544453
  • [R] B. Holmes, 1975: Geometric functional analysis and its applications, Springer-Verlag, New York. MR 0410335 (53:14085)
  • [L] D. Irvine, S. P. Marin, and P. W. Smith, 1986: Constrained interpolation and smoothing, Constr. Approx. 2, 128-151. MR 891965 (89d:65008)
  • [K] Jacobs, 1978: Measure and integral, Academic Press, New York. MR 514702 (80k:28002)
  • [G] J. O. Jameson, 1974: Topology and normed spaces, Chapman and Hall, London. MR 0463890 (57:3828)
  • [S] Karlin and W. Studden, 1966: Tchebycheff systems and applications in analysis and statistics, Interscience. MR 0204922 (34:4757)
  • [Y] Katznelson 1968: An introduction to harmonic analysis, Wiley, New York. MR 0248482 (40:1734)
  • [S] M. Kay and S. L. Marple, 1981: Spectrum analysis--a modern perspective, Proc. IEEE 69, 1380-1419.
  • [J] L. Kelley, 1955: General topology, Van Nostrand, Princeton, N. J. MR 0070144 (16:1136c)
  • [H] J. Landau, (ed.), 1987: Moments in mathematics, Short Course Lecture Notes, vol. 37, Amer. Math. Soc., Providence, R.I. MR 921081 (88g:44001)
  • [S] W. Lang and J. H. McClellan, 1983: Spectral estimation for sensor arrays, IEEE Trans. Acoust. Speech Signal Process. 31, 349-358.
  • [A] S. Lewis, 1989: The convergence of entropie estimates for moment problems, in Functional Analysis/Optimization (J. R. Giles and S. Fitzpatrick, eds.), Proceedings of the Centre for Mathematical Analysis, vol. 20, Canberra, Australia, pp. 100-115. MR 1009598 (91a:41030)
  • [G] G. Lorentz, 1986: Approximation of functions, Chelsea, New York. MR 917270 (88j:41001)
  • [L] R. Mead and N. Papanicolaou, 1984: Maximum entropy in the problem of moments, J. Math. Phys. 25, 2404-2417. MR 751523 (86h:82010)
  • [R] T. Rockafellar 1968: Integrals which are convex functionals, Pacific J. Math. 24, 525-539. MR 0236689 (38:4984)
  • 3. -, 1974: Conjugate duality and optimization, SIAM, Philadelphia, Pa.
  • [W] Rudin, 1966: Real and complex analysis, McGraw-Hill, New York. MR 0210528 (35:1420)
  • [H] H. Schaefer, 1971: Topological vector spaces, Springer-Verlag, New York. MR 0342978 (49:7722)
  • [K] R. Stromberg, 1981: An introduction to classical real analysis, Wadsworth, Belmont, Calif. MR 604364 (82c:26002)
  • [D] V. Widder, 1941: The Laplace transform, Princeton Univ. Press, Princeton, N.J. MR 0005923 (3:232d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 44A60, 90C90

Retrieve articles in all journals with MSC: 44A60, 90C90


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1008695-8
Keywords: Moment problem, entropy, semi-infinite program, duality, Riemann integral, compact level sets, uniformly convex
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society