Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the convergence of moment problems

Authors: J. M. Borwein and A. S. Lewis
Journal: Trans. Amer. Math. Soc. 325 (1991), 249-271
MSC: Primary 44A60; Secondary 90C90
MathSciNet review: 1008695
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the problem of estimating a nonnegative density, given a finite number of moments. Such problems arise in numerous practical applications. As the number of moments increases, the estimates will always converge weak$ ^\ast $ as measures, but need not converge weakly in $ {L_1}$. This is related to the existence of functions on a compact metric space which are not essentially Riemann integrable (in some suitable sense). We characterize the type of weak convergence we can expect in terms of Riemann integrability, and in some cases give error bounds. When the estimates are chosen to minimize an objective function with weakly compact level sets (such as the Bolzmann-Shannon entropy) they will converge weakly in $ {L_1}$. When an $ {L_p}$ norm $ (1 < p < \infty)$ is used as the objective, the estimates actually converge in norm. These results provide theoretical support to the growing popularity of such methods in practice.

References [Enhancements On Off] (What's this?)

  • [R] Robert B. Ash, Measure, integration, and functional analysis, Academic Press, New York-London, 1972. MR 0435321
  • [G] A. Baker and P. Graves-Morris, 1980: Pade approximants, Addison-Wesley, Reading, Mass.
  • [A] A. Ben-Tal, J. M. Borwein, and M. Teboulle, A dual approach to multidimensional 𝐿_{𝑝} spectral estimation problems, SIAM J. Control Optim. 26 (1988), no. 4, 985–996. MR 948654,
  • 1. -, 1988(b): Spectral estimation via convex programming (to appear).
  • [J] Jonathan M. Borwein, Semi-infinite programming duality: how special is it?, Semi-infinite programming and applications (Austin, Tex., 1981) Lecture Notes in Econom. and Math. Systems, vol. 215, Springer, Berlin-New York, 1983, pp. 10–36. MR 709266
  • [J] M. Borwein and A. S. Lewis, 1988(a): Partially finite convex programming, Parts I and II, Math. Programming (to appear).
  • 2. J. M. Borwein and A. S. Lewis, Duality relationships for entropy-like minimization problems, SIAM J. Control Optim. 29 (1991), no. 2, 325–338. MR 1092730,
  • [J] P. Burg, 1975: Maximum entropy spectral analysis, Ph. D. dissertation, Stanford University, Stanford, Calif.
  • [E] E. W. Cheney, Introduction to approximation theory, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0222517
  • [M] Mahlon M. Day, Normed linear spaces, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg;, 1962. MR 0145316
  • [N] Dunford and J. T. Schwartz, 1958: Linear operators, Part I, Interscience, New York.
  • [B] B. Forte, W. Hughes, and Z. Páles, Maximum entropy estimators and the problem of moments, Rend. Mat. Appl. (7) 9 (1989), no. 4, 689–699 (1990) (English, with Italian summary). MR 1056231
  • [B] K. Goodrich and A. Steinhardt, 1986: $ {L_2}$ spectral estimation, SIAM J. Appl. Math. 46, 417-428.
  • [F] Felix Hausdorff, Summationsmethoden und Momentfolgen. I, Math. Z. 9 (1921), no. 1-2, 74–109 (German). MR 1544453,
  • [R] Richard B. Holmes, Geometric functional analysis and its applications, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 24. MR 0410335
  • [L] Larry D. Irvine, Samuel P. Marin, and Philip W. Smith, Constrained interpolation and smoothing, Constr. Approx. 2 (1986), no. 2, 129–151. MR 891965,
  • [K] Konrad Jacobs, Measure and integral, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Probability and Mathematical Statistics; With an appendix by Jaroslav Kurzweil. MR 514702
  • [G] G. J. O. Jameson, Topology and normed spaces, Chapman and Hall, London; Halsted Press [John Wiley & Sons], New York, 1974. MR 0463890
  • [S] Samuel Karlin and William J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR 0204922
  • [Y] Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
  • [S] M. Kay and S. L. Marple, 1981: Spectrum analysis--a modern perspective, Proc. IEEE 69, 1380-1419.
  • [J] John L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. MR 0070144
  • [H] Henry J. Landau (ed.), Moments in mathematics, Proceedings of Symposia in Applied Mathematics, vol. 37, American Mathematical Society, Providence, RI, 1987. Papers from the American Mathematical Society annual meeting held in San Antonio, Tex., January 20–22, 1987; AMS Short Course Lecture Notes. MR 921081
  • [S] W. Lang and J. H. McClellan, 1983: Spectral estimation for sensor arrays, IEEE Trans. Acoust. Speech Signal Process. 31, 349-358.
  • [A] A. S. Lewis, The convergence of entropic estimates for moment problems, Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 20, Austral. Nat. Univ., Canberra, 1988, pp. 100–115. MR 1009598,
  • [G] G. G. Lorentz, Approximation of functions, 2nd ed., Chelsea Publishing Co., New York, 1986. MR 917270
  • [L] Lawrence R. Mead and N. Papanicolaou, Maximum entropy in the problem of moments, J. Math. Phys. 25 (1984), no. 8, 2404–2417. MR 751523,
  • [R] R. T. Rockafellar, Integrals which are convex functionals, Pacific J. Math. 24 (1968), 525–539. MR 0236689
  • 3. -, 1974: Conjugate duality and optimization, SIAM, Philadelphia, Pa.
  • [W] Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210528
  • [H] Helmut H. Schaefer, Topological vector spaces, Springer-Verlag, New York-Berlin, 1971. Third printing corrected; Graduate Texts in Mathematics, Vol. 3. MR 0342978
  • [K] Karl R. Stromberg, Introduction to classical real analysis, Wadsworth International, Belmont, Calif., 1981. Wadsworth International Mathematics Series. MR 604364
  • [D] David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 44A60, 90C90

Retrieve articles in all journals with MSC: 44A60, 90C90

Additional Information

Keywords: Moment problem, entropy, semi-infinite program, duality, Riemann integral, compact level sets, uniformly convex
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society