Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

How porous is the graph of Brownian motion?


Authors: J. T. Cox and Philip S. Griffin
Journal: Trans. Amer. Math. Soc. 325 (1991), 119-140
MSC: Primary 60J65
DOI: https://doi.org/10.1090/S0002-9947-1991-1013328-0
MathSciNet review: 1013328
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the graph of Brownian motion is almost surely porous, and determine the Hausdorff dimension of sets with a given porosity index. In particular we show that the porosity index of the graph is $ {\gamma _0} \doteq 0.6948$.


References [Enhancements On Off] (What's this?)

  • [1] M. T. Barlow and E. A. Perkins, Brownian motion at a slow point, Trans. Amer. Math. Soc. 296 (1986), 741-775. MR 846605 (88b:60181)
  • [2] B. Davis, On Brownian slow points, Z. Wahrsch. Verw. Gebeite 64 (1983), 359-367. MR 716492 (85g:60085a)
  • [3] B. Davis and E. A. Perkins, Brownian slow points: the critical case, Ann. Probab. 13 (1985), 779-803. MR 799422 (86j:60184)
  • [4] A. Denjoy, Lecons sur le calcul des coefficients d'une serie trigonometrique, Part II, Metrique et topologie d'ensembles parfait et de fonctions, Gauthier-Villars, Paris, 1941.
  • [5] E. P. Dolzhenko, Boundary properties of arbitrary functions, Math. USSR 12 (1967), no. 1, 1-12.
  • [6] J. Foran, Continuous functions need not have $ \sigma $-porous graphs, Real Anal. Exchange 11 (1985-86), 194-203. MR 828490 (87d:26003)
  • [7] C. Goffman, The graph of Brownian motion is not strongly porous, Preprint, 1988.
  • [8] P. A. Greenwood and E. A. Perkins, A conditioned limit theorem for random walk and Brownian local time on square root boundaries, Ann. Probab. 11 (1983), 227-261. MR 690126 (85d:60068)
  • [9] -, Limit theorems for excursions from a moving boundary, Theor. Probab. Appl. 29 (1984), 517-528. MR 773439 (86f:60045)
  • [10] E. Perkins, On the Hausdorff dimension of the Brownian slow points, Z. Wahrsch. Verw. Gebiete 64 (1983), 369-399. MR 716493 (85g:60085b)
  • [11] B. S. Thomson, Real functions, Springer-Verlag, New York, 1985. MR 818744 (87f:26001)
  • [12] L. Zajicek, Sets of $ \sigma $-porosity and sets of $ \sigma $-porosity $ (q)$, Časopis Pěst. Mat. 101 (1976), 350-359. MR 0457731 (56:15935)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J65

Retrieve articles in all journals with MSC: 60J65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1013328-0
Keywords: Brownian motion, arcsine law, porous sets, Hausdorff dimension
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society