The generalized Dowling lattices

Author:
Phil Hanlon

Journal:
Trans. Amer. Math. Soc. **325** (1991), 1-37

MSC:
Primary 06B05; Secondary 06B99, 20C15

DOI:
https://doi.org/10.1090/S0002-9947-1991-1014249-X

MathSciNet review:
1014249

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study a new class of lattices called the generalized Dowling lattices. These lattices are parametrized by a positive integer , a finite group , and a meet sublattice of the lattice of subgroups of . For an appropriate choice of the generalized Dowling lattice agrees with the ordinary Dowling lattice . For a different choice of , the generalized Dowling lattices are the lattice of intersections of a set of subspaces in complex space. The set of subspaces, defined in terms of a representation of , generalizes the thick diagonal in .

We compute the Möbius function and characteristic polynomial of the lattice along with the homology of in terms of the homology of . We go on to compute the character of wr acting on the homology of . This computation provides a nontrivial generalization of a result due to Stanley concerning the character of acting on the top homology of the partition lattice.

**[1]**F. Bergeron, N. Bergeron, and A. M. Garsia,*Idempotents for the free Lie algebra and*-*enumeration*, preprint.**[2]**Anders Björner and James W. Walker,*A homotopy complementation formula for partially ordered sets*, European J. Combin.**4**(1983), no. 1, 11–19. MR**694463**, https://doi.org/10.1016/S0195-6698(83)80003-1**[3]**Dan Burghelea and Micheline Vigué-Poirrier,*Cyclic homology of commutative algebras. I*, Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986) Lecture Notes in Math., vol. 1318, Springer, Berlin, 1988, pp. 51–72. MR**952571**, https://doi.org/10.1007/BFb0077794**[4]**Henry H. Crapo,*The Möbius function of a lattice*, J. Combinatorial Theory**1**(1966), 126–131. MR**0193018****[5]**T. A. Dowling,*A class of geometric lattices based on finite groups*, J. Combinatorial Theory Ser. B**14**(1973), 61–86. MR**0307951****[6]**Walter Feit,*Characters of finite groups*, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR**0219636****[7]**Murray Gerstenhaber and S. D. Schack,*A Hodge-type decomposition for commutative algebra cohomology*, J. Pure Appl. Algebra**48**(1987), no. 3, 229–247. MR**917209**, https://doi.org/10.1016/0022-4049(87)90112-5**[8]**Mark Goresky and Robert MacPherson,*Stratified Morse theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR**932724****[9]**Phil Hanlon,*The fixed-point partition lattices*, Pacific J. Math.**96**(1981), no. 2, 319–341. MR**637975****[10]**Phil Hanlon,*The action of 𝑆_{𝑛} on the components of the Hodge decomposition of Hochschild homology*, Michigan Math. J.**37**(1990), no. 1, 105–124. MR**1042517**, https://doi.org/10.1307/mmj/1029004069**[11]**Gordon James and Adalbert Kerber,*The representation theory of the symmetric group*, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR**644144****[12]**Jean-Louis Loday,*Opérations sur l’homologie cyclique des algèbres commutatives*, Invent. Math.**96**(1989), no. 1, 205–230 (French). MR**981743**, https://doi.org/10.1007/BF01393976**[13]**D. Passman,*Permutation groups*, Yale Univ. Press, 1967.**[14]**C. Reutenauer,*Theorem on Poincaré-Birkhoff-Witt, logarithm, and representations of the symmetric group whose orders are the Stirling numbers*, preprint.**[15]**Gian-Carlo Rota,*On the foundations of combinatorial theory. I. Theory of Möbius functions*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**2**(1964), 340–368 (1964). MR**0174487**, https://doi.org/10.1007/BF00531932**[16]**Richard P. Stanley,*Some aspects of groups acting on finite posets*, J. Combin. Theory Ser. A**32**(1982), no. 2, 132–161. MR**654618**, https://doi.org/10.1016/0097-3165(82)90017-6

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
06B05,
06B99,
20C15

Retrieve articles in all journals with MSC: 06B05, 06B99, 20C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-1014249-X

Article copyright:
© Copyright 1991
American Mathematical Society