Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Groups of prime power order as Frobenius-Wielandt complements

Author: Carlo M. Scoppola
Journal: Trans. Amer. Math. Soc. 325 (1991), 855-874
MSC: Primary 20D15; Secondary 20C15, 20D40
MathSciNet review: 998129
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that the Sylow subgroups of a Frobenius complement are cyclic or generalized quaternion. In this paper it is shown that there are no restrictions at all on the structure of the Sylow subgroups of the Frobenius-Wielandt complements that appear in the well-known Wielandt's generalization of Frobenius' Theorem. Some examples of explicit constructions are also given.

References [Enhancements On Off] (What's this?)

  • [D] R. Dark, On nilpotent products of groups of prime order, Thesis, Cambridge University, Cambridge, 1968.
  • [E] A. Espuelas, The complement of a Frobenius-Wielandt group, Proc. London Math. Soc. (3) 48 (1984), 564-576. MR 735228 (86b:20021)
  • [H] B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin, 1967. MR 0224703 (37:302)
  • [Ha] M. Hall, The theory of groups, 2nd ed., Chelsea, New York, 1976. MR 0414669 (54:2765)
  • [HB] B. Huppert and N. Blackburn, Finite groups. II, Springer-Verlag, Berlin, 1982. MR 650245 (84i:20001a)
  • [L] M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Ecole Norm. Sup. 71 (1954), 101-190. MR 0088496 (19:529b)
  • [LP] B. Lou and D. Passman, Generalized Frobenius complements, Proc. Amer. Math. Soc. 17 (1966), 1166-1172. MR 0201505 (34:1387)
  • [MW] H. Meier-Wunderli, Note on a basis of P. Hall for the higher commutators in free groups, Comment. Math. Helv. 26 (1952), 1-5. MR 0047044 (13:818f)
  • [S1] C. M. Scoppola, Abelian generalized Frobenius complements for $ p$-groups and the Hughes problem, Arch. Math, (to appear) MR 896528
  • [S2] -, An example of a nonabelian Frobenius-Wielandt complement, Group Theory (Proceedings, Brixen/Bressanone 1986), Lecture Notes in Math., vol. 1281, Springer, pp. 151-157. MR 921700
  • [W1] G. E. Wall, Secretive $ p$-groups of large rank, Bull. Austral. Math. Soc. 12 (1975), 363-369. MR 0384926 (52:5796)
  • [W2] -, Lie methods in group theory, Proc. 18th SRI Canberra 1978, pp. 137-173. MR 524369 (80h:20057)
  • [Z] H. Zassenhaus, Ein Verfahren, jeder endlichen $ p$-Gruppe einen Lie-Ring mit der Charakteristik $ p$ zuzuordnen, Abh. Math. Sem. Univ. Hamburg 13 (1940), 200-207.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20D15, 20C15, 20D40

Retrieve articles in all journals with MSC: 20D15, 20C15, 20D40

Additional Information

Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society