Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A Picard theorem with an application to minimal surfaces. II


Author: Peter Hall
Journal: Trans. Amer. Math. Soc. 325 (1991), 895-902
MSC: Primary 53A10; Secondary 32H25
DOI: https://doi.org/10.1090/S0002-9947-1991-1013332-2
MathSciNet review: 1013332
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f:{\mathbf{C}} \to {{\mathbf{R}}^n}$ be a parabolic minimal surface such that the normals to $ f$ omit $ n + k$ directions in general position, $ k \geq 0$. We obtain sharp bounds on the dimension of the affine span of $ f$ and of the linear span of the Gauss map of $ f$.


References [Enhancements On Off] (What's this?)

  • [1] M. L. Green, Holomorphic maps into complex projective spaces omitting hyperplanes, Trans. Amer. Math. Soc. 169 (1972), 89-103. MR 0308433 (46:7547)
  • [2] M. L. Green, On the functional equation $ {f^2} = {e^{2{\varphi _1}}} + {e^{2{\varphi _2}}} + {e^{2{\varphi _3}}}$ and a new Picard theorem, Trans. Amer. Math. Soc. 195 (1974), 223-230. MR 0348112 (50:610)
  • [3] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978. MR 507725 (80b:14001)
  • [4] P. Hall, A Picard theorem with an application to minimal surfaces, Trans. Amer. Math. Soc. 314 (1989), 597-603. MR 978376 (89m:53014)
  • [5] D. A. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc., vol. 28, no. 236, 1980. MR 587748 (82b:53012)
  • [6] H. B. Lawson, Jr., Lectures on minimal submanifolds. I, Publish or Perish, Berkeley, Calif., 1980.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53A10, 32H25

Retrieve articles in all journals with MSC: 53A10, 32H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1013332-2
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society