Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The holomorphic discrete series of an affine symmetric space and representations with reproducing kernels


Authors: G. Ólafsson and B. Ørsted
Journal: Trans. Amer. Math. Soc. 326 (1991), 385-405
MSC: Primary 22E46; Secondary 22E30, 43A85
DOI: https://doi.org/10.1090/S0002-9947-1991-1002923-0
MathSciNet review: 1002923
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a semisimple connected Lie group $ G$ with an affine symmetric space $ X$. We study abstractly the intertwining operators from the discrete series of $ X$ into representations with reproducing kernel and, in particular, into the discrete series of $ G$; each such is given by a convolution with an analytic function. For $ X$ of Hermitian type, we consider the holomorphic discrete series of $ X$ and here derive very explicit formulas for the intertwining operators. As a corollary we get a multiplicity one result for the series in question.


References [Enhancements On Off] (What's this?)

  • [1] E. P. van den Ban, Asymptotic behaviour of matrix coefficients related to reductive symmetric spaces, Proc. Koninklijke Nederl. Akad. Wetensch. A 90 (1987).
  • [2] F. Bien, Multiplicity one for exceptional symmetric spaces, Preprint, May 1987; Spherical $ \mathcal{D}$-modules and representations of reductive Lie groups, Ph.D. Thesis, M.I.T., June 1986.
  • [3] M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math. 111 (1980), 253-311. MR 569073 (81h:22015)
  • [4] -, $ K$-finite joint eigenfunctions of $ U{(\mathfrak{g})^K}$ on a non-Riemannian semisimple symmetric space $ G/H$, Lecture Notes in Math., vol. 880, Springer-Verlag, Berlin, 1981.
  • [5] -, Analysis on non-Riemannian symmetric spaces, CBMS Regional Conf. Ser. in Math., no. 61, Amer. Math. Soc., Providence, R.I., 1987.
  • [6] E. Gutkin, Invariant elliptic operators and unitary representations, Ph.D. Thesis, Brandeis Univ., 1978; Preprint, 1979.
  • [7] H. Hecht and W. Schmid, On integrable representations of semisimple Lie groups, Math. Ann. 220 (1976), 147-150. MR 0399358 (53:3203)
  • [8] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York and London, 1978. MR 514561 (80k:53081)
  • [9] R. Hotta, On realization of the discrete series for semisimple Lie groups, J. Math. Soc. Japan 23 (1971), 384-407. MR 0306405 (46:5531)
  • [10] A. W. Knapp, Representation theory of semisimple groups: An overview based on examples, Princeton Univ. Press, Princeton, N. J., 1986. MR 855239 (87j:22022)
  • [11] M. Matsumoto, Discrete series for an affine symmetric space, Hiroshima Math. J. 11 (1981), 53-79. MR 606834 (83c:22016)
  • [12] T. Matsuki and T. Oshima, A description of discrete series for semisimple symmetric spaces, Adv. Stud. Pure Math., vol. 4, 1984, pp. 229-390. MR 810636 (87m:22042)
  • [13] G. Olafsson, Die Langlands Parameter für die Flensled-Jensensche fundamentale Reihe, Math. Scand. 55 (1984), 229-244. MR 787199 (86k:22034)
  • [14] G. Olafsson and B. Ørsted, The holomorphic discrete series for affine symmetric spaces. I, Mathematica Gottingensis, no. 43, 1987; J. Funct. Anal. 82 (1988), 126-159. MR 967894 (89m:22021)
  • [15] -, Imbedding of the discrete series of $ G$ into $ {{\mathbf{L}}^2}(X)$, Mathematica Gottingensis, no. 5, 1988.
  • [16] H. Rossi and M. Vergne, Analytic continuation of the holomorphic discrete series of a semisimple Lie group, Acta Math. 136 (1976), 1-59. MR 0480883 (58:1032)
  • [17] H. Schlichtkrull, On some series of representations related to symmetric spaces, Mém. Soc. Math. France (N.S.), no. 15, 1984, pp. 277-289. MR 789088 (86j:22022)
  • [18] -, The Langlands parameters of Flensted-Jensen's discrete series for semisimple symmetric spaces, J. Funct. Anal. 50 (1983), 133-150. MR 693225 (84h:22030)
  • [19] -, Hyperfunctions and harmonic analysis on symmetric spaces, Birkhäuser, Boston, Mass. and Basel, 1984. MR 757178 (86g:22021)
  • [20] P. C. Trombi and V. S. Varadarajan, Asymptotic behavior of eigenfunctions on a semisimple Lie groups: The discrete spectrum, Acta Math. 129 (1972), 237-280. MR 0393349 (52:14159)
  • [21] V. S. Varadarajan, Harmonic analysis on real reductive groups, Lecture Notes in Math., vol. 576, Springer-Verlag, Berlin, 1977. MR 0473111 (57:12789)
  • [22] N. Wallach, The analytic continuations of the discrete series. I, II, Trans. Amer. Math. Soc. 251 (1979), 1-17 and 19-37. MR 531967 (81a:22009)
  • [23] N. R. Wallach and J. A. Wolf, Completeness of Poincaré series for automorphic forms associated to the integrable discrete series, P. C. Trombi (ed.), Representation Theory of Reductive Groups, (Proc. Univ. of Utah Conf., 1982), Birkhäuser, Boston, Mass. and Basel, 1983, pp. 265-281. MR 733818 (85k:22038)
  • [24] G. Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, Berlin, 1972. MR 0498999 (58:16979)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E46, 22E30, 43A85

Retrieve articles in all journals with MSC: 22E46, 22E30, 43A85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1002923-0
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society