Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Cyclic Galois extensions and normal bases


Author: C. Greither
Journal: Trans. Amer. Math. Soc. 326 (1991), 307-343
MSC: Primary 11R23; Secondary 11R32, 13B05
DOI: https://doi.org/10.1090/S0002-9947-1991-1014248-8
MathSciNet review: 1014248
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Kummer theory is presented which does not need roots of unity in the ground ring. For $ R$ commutative with $ {p^{ - 1}} \in R$ we study the group of cyclic Galois extensions of fixed degree $ {p^n}$ in detail. Our theory is well suited for dealing with cyclic $ {p^n}$-extensions of a number field $ K$ which are unramified outside $ p$. We then consider the group $ \operatorname{Gal}({\mathcal{O}_K}[{p^{ - 1}}],{C_{{p^n}}})$ of all such extensions, and its subgroup $ {\text{NB}}({\mathcal{O}_K}[{p^{ - 1}}],{C_{{p^n}}})$ of extensions with integral normal basis outside $ p$. For the size of the latter we get a simple asymptotic formula $ (n \to \infty)$, and the discrepancy between the two groups is in some way measured by the defect $ \delta $ in Leopoldt's conjecture.


References [Enhancements On Off] (What's this?)

  • [1] E. Artin, Über Einheiten relativ galoisscher Zahlkörper, J. Math. 167 (1931) 153-156; Gesammelte Werke, pp. 197-200.
  • [2] A. Borevich, Kummer extensions of rings, J. Soviet Math. 11 (1979), 514-534.
  • [3] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [4] S. U. Chase, D. K. Harrison, and A. Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965) (reprinted with corrections 1968). MR 0195922 (33:4118)
  • [5] L. Childs, The group of unramified Kummer extensions of prime degree, Proc. London Math. Soc. 35 (1977), 407-422. MR 0485821 (58:5623)
  • [6] -, Cyclic Stickelberger cohomology and descent of Kummer extensions, Proc. Amer. Math. Soc. 90 (1984), 505-510. MR 733396 (85c:12003)
  • [7] R.Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284. MR 0401702 (53:5529)
  • [8] C. Greither, Cyclic Galois extensions and normal bases, Habilitationsschrift, Universität München, 1988. MR 1024572 (90j:11119)
  • [9] -,, Cyclic extensions and normal bases, Proc. Internat. Number Theory Conference (Quebec 1987), De Gruyter, 1989, pp. 322-329.
  • [10] C. Greither and R. Miranda, Galois extensions of prime degree, J. Algebra 124 (1989), 354-366. MR 1011601 (90k:13003)
  • [11] R. Haggenmüller, Über Invarianten separabler Galoiserweiterungen kommutativer Ringe, Dissertation, Universität München, 1979.
  • [12] -, Über die Gruppe der Galoiserweiterungen vom Primzahlgrad, Habilitationsschrift, Universität München, 1985.
  • [13] D. K. Harrison, Abelian extensions of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965) (reprinted with corrections 1968). MR 0195921 (33:4117)
  • [14] H. Hasse, Die Multiplikationsgruppe der abelschen Körper mit fester Galoisgruppe, Abh. Math. Sem. Univ. Hamburg 16 (1949), 29-40. MR 0032597 (11:313d)
  • [15] K. Iwasawa, On $ {\mathbb{Z}_l}$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246-326. MR 0349627 (50:2120)
  • [16] G. Janusz, Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122 (1966), 461-479. MR 0210699 (35:1585)
  • [17] I. Kersten, Eine neue Kummertheorie für zyklische Galoiserweiterungen vom Grad $ {p^2}$, Algebra-Bericht Nr. 45, Fischer, München, 1983. MR 700974 (85b:13007)
  • [18] I. Kersten and J. Michaliček, Kummer theory without roots of unity, J. Pure Appl. Algebra 50 (1988), 21-72. MR 931906 (89h:12009)
  • [19] -, On $ \Gamma $-extensions of totally real and complex multiplication fields, Math. Rep. Acad. Sci. Canada 9 (1987), 309-314. MR 916909 (88j:11068)
  • [20] -, $ {\mathbb{Z}_p}$-extensions of complex multiplication fields, Ber. Math. Sem. Univ. Hamburg Ser. A 1 (1987).
  • [21] M.-A. Knus and M. Ojanguren, Théorie de la déscente et algèbres d'Azumaya, Lecture Notes in Math., vol. 389, Springer, 1974. MR 0417149 (54:5209)
  • [22] H.-W. Leopoldt, Zur Arithmetik in abelschen Zahlkörpern, J. Reine Angew. Math. 209 (1962), 54-71. MR 0139602 (25:3034)
  • [23] S. Mac Lane, Homology, Grundlehren der Math. Wiss., no. 114, Springer, 1963. MR 1344215 (96d:18001)
  • [24] A. S. Merkurjev, On the structure of Brauer groups of fields, Math. USSR Izv. 27 (1986), no. 1. 141-157. MR 806687 (87b:12005)
  • [25] D. Saltman, Generic Galois extensions and problems in field theory, Adv. in Math. 43 (1982), 250-283. MR 648801 (84a:13007)
  • [26] S. Wang, A counterexample to Grunwald's theorem, Ann. of Math. (2) 49 (1948), 1008-1009. MR 0026992 (10:231g)
  • [27] L. Washington, Introduction to cyclotomic fields, Graduate Texts in Math., no. 83, Springer, 1982. MR 718674 (85g:11001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11R23, 11R32, 13B05

Retrieve articles in all journals with MSC: 11R23, 11R32, 13B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1014248-8
Keywords: Galois extensions of rings, descent, integral normal bases, Leopoldt's conjecture
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society