Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Action on Grassmannians associated with a field extension


Author: Patrick Rabau
Journal: Trans. Amer. Math. Soc. 326 (1991), 127-155
MSC: Primary 05E05; Secondary 05A19, 05A30, 14L30, 33D15, 33D80
DOI: https://doi.org/10.1090/S0002-9947-1991-1043863-0
MathSciNet review: 1043863
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We examine the action of the general linear group $ {\text{GL}}_L(V)$ on the set of all $ K$-subspaces of $ V$, where $ L/K$ is a finite field extension and $ V$ is a finite-dimensional vector space over $ L$. The orbits are completely classified in the case of quadratic and cubic extensions; for infinite fields, the number of orbits is shown to be infinite if the degree of the extension is at least four. As an application we obtain $ q$-analogues of tranformation and evaluation formulas for hypergeometric functions due to Gessel and Stanton.


References [Enhancements On Off] (What's this?)

  • [1] G. Andrews, The theory of partitions, Addison-Wesley, Reading, Mass., 1976. MR 0557013 (58:27738)
  • [2] W. Bailey, Generalized hypergeometric series, Cambridge Univ. Press, Cambridge, 1935.
  • [3] A. Borel, Linear algebraic groups, Benjamin, New York, 1969. MR 0251042 (40:4273)
  • [4] N. Bourbaki, Algèbre, Chapitres 1-3, Diffusion C.C.L.S., Paris, 1970.
  • [5] S. Gelbart, I. Piatetski-Shapiro and S. Rallis, Explicit constructions of automorphic $ L$-functions, Lecture Notes in Math., vol. 1254, Springer-Verlag, New York, 1987. MR 892097 (89k:11038)
  • [6] I. Gessel and D. Stanton, Strange evaluations of hypergeometric series, Siam J. Math. Anal. 13 (1982), 295-308. MR 647127 (83c:33002)
  • [7] D. S. Kim and P. Rabau, Action on Grassmannians associated with commutative semisimple algebras, Trans. Amer. Math. Soc. 326 (1991), 157-168. MR 1068929 (91j:05102)
  • [8] D. S. Kim and P. Rabau, Field extensions and isotropic subspaces in symplectic geometry, Geom. Dedicata 34 (1990), 281-293. MR 1066579 (92d:11035)
  • [9] P. Rabau, Enumeration in vector spaces over a field extension, Ph.D. thesis, University of Minnesota, 1988.
  • [10] R. Stanley, Quotients of Peck posets, Order 1 (1984), 29-34. MR 745587 (85m:06007)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 05E05, 05A19, 05A30, 14L30, 33D15, 33D80

Retrieve articles in all journals with MSC: 05E05, 05A19, 05A30, 14L30, 33D15, 33D80


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1043863-0
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society