Remarks on forced equations of the double pendulum type

Author:
Gabriella Tarantello

Journal:
Trans. Amer. Math. Soc. **326** (1991), 441-452

MSC:
Primary 58F22; Secondary 34C25, 58E05, 58F05, 70H35, 70K40

MathSciNet review:
1049620

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by the double pendulum equation we consider Lagrangian systems with potential periodic in each of the variables . We study periodic solutions for the corresponding equation of motion subject to a periodic force . If has mean value zero, the corresponding variational problem admits a symmetry which yields distinct periodic solutions (see [9]). Here we consider the case where the average of , though bounded, is no longer required to be zero. We show how this situation becomes more delicate, and in general it is only possible to claim no more than two periodic solutions.

**[1]**Antonio Ambrosetti and Paul H. Rabinowitz,*Dual variational methods in critical point theory and applications*, J. Functional Analysis**14**(1973), 349–381. MR**0370183****[2]**A. Capozzi, D. Fortunato, and A. Salvatore,*Periodic solutions of Lagrangian systems with bounded potential*, J. Math. Anal. Appl.**124**(1987), no. 2, 482–494. MR**887004**, 10.1016/0022-247X(87)90009-6**[3]**Kung-Ching Chang, Yi Ming Long, and Eduard Zehnder,*Forced oscillations for the triple pendulum*, Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 177–208. MR**1039344****[4]**G. Fournier and M. Willem,*Multiple solutions of the forced double pendulum equation*, Ann. Inst. H. Poincaré Anal. Non Linéaire**6**(1989), no. suppl., 259–281. Analyse non linéaire (Perpignan, 1987). MR**1019117****[5]**Da Jun Guo, Jing Xian Sun, and Gui Jie Qi,*Some extensions of the mountain pass lemma*, Differential Integral Equations**1**(1988), no. 3, 351–358. MR**929922****[6]**Helmut Hofer,*A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem*, J. London Math. Soc. (2)**31**(1985), no. 3, 566–570. MR**812787**, 10.1112/jlms/s2-31.3.566**[7]**J. Mawhin and M. Willem,*Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations*, J. Differential Equations**52**(1984), no. 2, 264–287. MR**741271**, 10.1016/0022-0396(84)90180-3**[8]**Richard S. Palais,*Lusternik-Schnirelman theory on Banach manifolds*, Topology**5**(1966), 115–132. MR**0259955****[9]**Paul H. Rabinowitz,*On a class of functionals invariant under a 𝑍ⁿ action*, Trans. Amer. Math. Soc.**310**(1988), no. 1, 303–311. MR**965755**, 10.1090/S0002-9947-1988-0965755-5**[10]**Gabriella Tarantello,*Multiple forced oscillations for the 𝑁-pendulum equation*, Comm. Math. Phys.**132**(1990), no. 3, 499–517. MR**1069833****[11]**Gabriella Tarantello,*On the number of solutions for the forced pendulum equation*, J. Differential Equations**80**(1989), no. 1, 79–93. MR**1003251**, 10.1016/0022-0396(89)90096-X

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F22,
34C25,
58E05,
58F05,
70H35,
70K40

Retrieve articles in all journals with MSC: 58F22, 34C25, 58E05, 58F05, 70H35, 70K40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-1049620-3

Article copyright:
© Copyright 1991
American Mathematical Society