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BLOW-UP OF STRAIGHTENING-CLOSED IDEALS
IN ORDINAL HODGE ALGEBRAS

WINFRIED BRUNS, ARON SIMIS, AND NGO VIET TRUNG

Abstract. We study a class of ideals / in graded ordinal Hodge algebras A .

These ideals are distinguished by the fact that their powers have a canonical

standard basis. This leads to Hodge algebra structures on the Rees ring and

the associated graded ring. Furthermore, from a natural standard filtration one

obtains a depth bound for A/In which, under certain conditions, is sharp for

n large. Frequently one observes that /" = r"'. Under suitable hypotheses it

is possible to calculate the divisor class group of the Rees algebra. Our main

examples are ideals of "virtual" maximal minors and ideals of maximal minors

"fixing a submatrix".

1. Introduction

Let B be a commutative (noetherian) ring and let R be a graded ordinal

Hodge algebra over B (see §2 for definitions). Let H denote the underlying

poset of R. The main object of the present work is to thoroughly study a

straightening-closed ideal fi, i.e., an ideal Q c H such that, for any incompa-

rable elements x, y 6 Q, if xy — J2m ^m^ l% tne corresponding straightening,

then every M contains at least two factors belonging to Q.

This concept was first introduced by Huneke, who showed that if Q is a

straightening-closed ideal then the elements of Q form a weak d-sequence in

R [Hu 2]. From an analysis of such sequences he then obtained various results

on the former ideals. Later, Eisenbud and Huneke showed that the Rees algebras

of straightening-closed ideals are again ordinal Hodge algebras in a natural way

[EH]. This enabled them to show that Rees algebras of certain determinantal

ideals are Cohen-Macaulay.

Our viewpoint is to give a self-contained account of straightening-closed

ideals, focusing largely on those properties that depend solely on the under-

lying Hodge algebra structure. As a main by-product, we recover most of the

results of [Hu 2] and [EH]. Moreover, some applications are given that do not
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seem to have been explained from the Hodge algebra viewpoint. This unified

treatment of the main examples, under the headline of straightening-closed ide-

als, has the effect of throwing clarity to the theory and conveying the usefulness

of Hodge algebra methods in typical questions of commutative algebra.

2. Hodge algebra approach to blow-ups

2.1. Straightening-closed ideals. Let H be a finite set endowed with a partial

order < (briefly, aposet). A monomial on H is a product hx---hn of elements

of H. We say that hx---hn is standard if hx < ■ ■ ■ < hn. Next, let B be a

commutative ring and H a poset. A 5-algebra A is a graded ordinal Hodge

algebra on H over B if the following conditions hold: (H0) A = ^i>QAj is

a graded 5-algebra with B = AQ, and H c A is a set of elements of positive

degree such that A = B[H] ; (H¡) the standard monomials on H axe linearly

independent over B ; (H2) for any two incomparable elements h, k e H, there

exists a relation hk = Y^m^m^■> w^tn ^m e ^■> ̂ m ^ ^ anc* ^ a standard

monomial on H, for which every M contains a factor I £ H with I < h and

l<k.
We note that the relation required in (H2) is uniquely determined by the pair

h, A; because of (H¡)—it is called the straightening ofh, k. It follows that A is

a free 5-module, the standard monomials serving as a basis (cf. [DEP, 1.1]); the

representation of an element as a 5-linear combination of standard monomials

is called its standard representation. For the general aspects of the theory of

Hodge algebras, the main reference will be the survey by DeConcini, Eisenbud

and Procesi [DEP]. We are mainly interested in further structures derived from

these algebras. As usual, an ideal in the poset H is a subset Q c // such that

k 6 Q whenever k < h e Í2.

(2.1.1) Definition. Let A be a graded ordinal Hodge algebra on a poset H. An

ideal Q c // is straightening-closed if, for every incomparable h, k e Q, each

standard monomial M appearing in the straightening of h, k contains at least

two factors from Q..

The reader should check that the intersection of straightening-closed ideals is

straightening-closed. We list some important examples of straightening-closed

ideals:

(2.1.2) Example. Suppose that A satisfies the following conditions (fulfilled by

many important examples): (i) if h, k e //, h < k, then degh > degk (as

homogeneous elements of A ); (ii) each standard monomial in the straightening

of a pair of incomparable elements contains at most two factors. Then the set Q

of elements of maximal degree in H obviously is a straightening-closed ideal.

(2.1.3) Example (Ordinary maximal minors). Let B be a commutative ring and

X a matrix of m x n indeterminates over B . Set R = B[X]. Then, as is well

known, A is a graded ordinal Hodge algebra over B on the poset A(X) of all

r-minors [j,,..., ir\jx, ... , jr] of X,  1 < r < min{m, n}. Here, the partial
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order < is defined by decreeing that

[/,,..., ir\jx,... ,jr]< [i\, ..., i's\j[,... ,j's]

if and only if r > s and /, </',,..., is < i's, jx <j[, ... , js < j's.

The straightening law on B[X] has the following properties: (i) Every stan-

dard monomial on the right side of a straightening contains at most two factors.

(ii) Every row index (column index) appears with the same multiplicity in all

the monomials involved in a straightening.

Property (i) holds since the straightening relations in B[X] can be viewed as

ß-linear combinations of dehomogenizations of the Plücker relations defining

a Grassmannian in a suitable way (cf. [BV, Section 4]). This fact implies (ii),

but (ii) also follows from the homogeneity of the minors with respect to the

collection of indeterminates in a given row or column.

In conjunction with (2.1.2), property (i) implies immediately that the set

F(X) of the maximal minors of X is a straightening-closed ideal.

(2.1.4) Example. (Ordinary maximal minors fixing a set of columns). Let R

be the Hodge algebra considered in the preceding example. For convenience,

assume that m <n . Let r be an integer such that 0 < r < m and let Fr(X) c

F(X) denote the subset whose elements are the maximal minors involving the

first r columns of X. It follows immediately, from the properties (i) and (ii)

of the straightening law in B[X] as listed above, that Fr(X) is a straightening-

closed ideal in B[X].

(2.1.5) Example. (Virtual maximal minors in determinantal rings). First, we

briefly describe what is meant here by determinantal rings—a complete account

is to be found in [BV]. The shortest, although not the most explicit, way to

introduce them is as follows. As in (2.1.3), let A(X) stand for the poset of all

minors of X. Given 3 e A(X), we set A(X ; 3) = {n e A(X)\n > 3}. The

complementary set £l(X; S) = A(X)\A(X ; S) is clearly an ideal in the poset

A(*). Denote by I(X; a) the ideal of the ring B[X] generated by Q.(X;3)

and let R(X ; Ô) = B[X]/I(X ; Ô).
It follows from the general theory that R(X ; 3) is again a graded ordi-

nal Hodge algebra over B on the poset A(X ; 3), called the determinantal

ring of type (X ; ô). A special notable case is the determinantal ring of type

(X; [1 • • • t- 1|1 • • •/— 1]) since it coincides with the residue class ring of B[X]

modulo the ideal It(X) generated by the /-minors of X.

Continuing, let 3 = [a, • • • ar\bx ■ ■ ■ br].  For given integers  1 < k < r and

ak < äk < ak+x, we let eak e A(X; 3) be the smallest element such that

e<k ~ tai " 'ak-\ak ' ' ' ̂ fl^i " "^f>] (clearly, f < r). One can see that the ide-

als I(X; eakk) and I(X; 3) contain the same minors up to order t < k - 1.

Moreover, the condition âk <ak+x ensures that the (Ac+1)-minors in I(X; eakk)

already belong to I(X ; 3). Therefore, the ideal I(X ; eäkk)/I(X ; S) of the deter-

minantal ring R(X ; 3) is generated by the A:-minors of the rows 1,... , ¿L - 1
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of X—we call it an ideal of virtual maximal minors of R(X ; 8). A similar

construction is possible with the columns of X. Notable instances are:

(1) 3 = [1.r|l.r],  erm+1 = [1,..., r - 1|1,..., r - 1].   Here,

I(X; e™+x)/I(X;8) = Ir(X)/Ir+x(X) c B[X]/Ir+x(X).

(2) J = [l.r|l.r], <+1 = [l,...,r-l,r+l|l,...,r].Here,

I(X;err+l)/I(X; 3) = Ir(X]r)/Ir+x(X) c B[X]/Ir+x(X),

where X,   stands for the r x n submatrix of X formed by the first r rows.

£l(X ; S ; e) = A(X ; ô) n £l(X ; e) is an ideal in A(X ; e). We claim that, for

e = eakk as above, the ideal £l(X ; 3 ; e) is straightening-closed. We sketch the

proof of this fact. Let c¡, v e Q(X ; 3 ; e) be incomparable elements, and let

£v = X] ̂ m^ ' ^m ^ 0 ' be tne corresponding straightening, where, typically,

M - pxp2, with px < p2 e A(X; «J) and /^ < £, i>. Now, an element of

A(X;3) belonging to £l(X;3;e) is characterizable by having exactly k row

indices strictly less than äk . Since the union (with multiplicities) of the row

indices is constant along the monomials, we must have p2 e £l(X; 3;e) as

well.

(2.1.6) Example. (Virtual maximal minors in Schubert cycles). This exam-

ple is similar to the preceding one, therefore we skip the details (cf. [BV]).

Let G(X) c B[X] be the 5-subalgebra generated by the set F(X) of max-

imal minor of the m x n generic matrix X. As is well-known, G(X) is

a graded ordinal Hodge algebra on F(X) over B. Given 3 e F(X), we

let F(X;3) = {n e F(X) \ n > 3}, J(X;3) = G(X)(F(X)\F(X ; 3)) and
G(X; 3) = G(X)/J(X; 8). The algebras G(X ; 3) arise as the homogeneous

coordinate rings of the Schubert subvarieties of the Grassmannian. Note that,

as in the preceding example, G(X ; 3) is a graded ordinal Hodge algebra on

F(X; 3) over B. Virtual maximal minors in G(X ; 3) axe defined in entire

analogy with the preceding example.

(2.1.7) Example. (Union of two skew linear subspaces). Let B be a commutative

ring, Xx, ... , Xn and Yx, ... , Ym two independent sets of indeterminates over

B , and R = B[X, Y]. One endows the set H = {X¡, Yj, X¡Yj\í <i<n,\<

j < m} with a poset structure as follows:

Xx<-<Xn,        Yx<...<Ym,       XiYjK X¡2 « /, < i2,

XiYJi<YJ2#jl<j2,       XJj^X^^i.Ki,   and   jx<j2.

One can think of H as the poset of entries of a suitable matrix with the greatest

element deleted. It is an easy exercise to see that R is indeed a graded ordinal

Hodge algebra on H over B .

Let Q = {X¡Yj | 1 < / < n, 1 < j < m}. Clearly, Q is a straightening-closed

ideal in H. Note that Q.R = (X)R n (Y)R, justifying the terminology "union

of two skew spaces". This ideal may be useful in studying the 2-minors of a

generic matrix (cf. (4.3)).
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2.2. Graded algebras derived from a straightening-closed ideal. We recall the

following notions. Let / c R be an ideal. The Rees algebra of / is the graded

R-algebxa 31(1) = R © / © I2 © ■ • • . If / is generated by a set {ax, ... , am} ,

then 32(1) admits a presentation 32(1) ~ R[T]/J, where T - Tx, ... , Tm

axe indeterminates over R and one assigns T¡-* a¡, 1 < i < m . By a similar

token, the symmetric algebra 5^(1) of / admits the /?-algebra presentation

5T(I) ~ R[T]/JX where Jx c / is the ideal generated by the 1-forms of J.

Thus, we have a surjection S?(l) —► 32(1), which is an isomorphism if and

only if J is generated by its 1-forms.

Observe that 32(1) can be embedded in the polynomial ring R[t] as the

.R-subalgebra R[It]. If, moreover, R has a structure of graded ordinal Hodge

algebra on a poset H c R over a ring B , and if / is generated by the elements

of a straightening-closed ideal fíe//, then R[It] can be endowed with a

structure of graded ordinal Hodge algebra over B on a suitable poset. This

procedure was discussed by Eisenbud and Huneke [EH]. The underlying poset

is H U fíí c R[It] (the elements of H being regarded as degree zero elements

of R[It]), partially ordered by decreeing: H is to have its original ordering, fíí

is to be ordered via the identification 8 <-> 3t, 8 € fí, and if h e //, áí e fíí,

then 8t < h if and only if S < h in //.

In this way, R[It] is a graded ordinal Hodge algebra on HuQt in a natural

way. We refer to [EH] for the details and content ourselves with the description

of the straightening relations. There are four types, the first three derived from

a straightening hk = J2m^m^ oi" incomparable elements h, k e H, and the

last one representing the trivial relation hk-kh:

kh = ^2bMM,       h, k e H,
M

ntk = J2bMÍxMt)yMNM>       h£Ü,keH,
M

htkt = J2bM(xMt)(yMt)NM'       h, keil,
M

htk-kth,       h, k efí, h > k,

where M = xMyMNM, with xM < yM < z, z e H a factor of NM. (Note

that the assumption on fí being straightening-closed warrants that, besides xM,

also yM € fí.)

Now, using a presentation R[It] ~ R[T]/J to read the straightening relations

as homogeneous polynomials in T, one easily obtains

(2.2.1) Lemma. The presentation ideal J of R[It] is generated by the l-forms

kTh- hTk,h > k, and kTh - Y,MbMyMNMTx , k e //, h e fí, and the

2-forms ThTk - EM bMNMTxTy¡t, h,ke£l.  '

Proof. Combine [DEP, Proposition 1.1] with the above description of the

straightening relations in R[It].   D
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Of course, the representation of R[It] is given in (2.2.1) is not minimal in

general, neither with respect to the generating set fíí, nor with respect to the

relations. We now state the main result of this section:

(2.2.2) Theorem. Let R be a graded ordinal Hodge algebra on a poset H over

a ring B, and fí c H a straightening-closed ideal.

(a) Suppose that fí is linearly ordered.

(i)  Then the elements of fí forms a d-sequence.

(ii) In particular the symmetric and the Rees algebra of fí/? coincide.

(b) Suppose that every standard monomial in a straightening relation hk =

Y,aMM, h e H, k e fí, contains at least two factors. Then (ii) implies

that fí is linearly ordered.

Proof, (a) The notion of úf-sequence was introduced by Huneke and the im-

plication (i) =>■ (ii) is the main result of [Hu 1]; of course, (ii) follows also

directly from (2.2.1): the representation ideal J of 32(1), I = fí/?, is gen-

erated by linear forms since there are no straightening relations of the third

type.

In order to show that the elements of fí = {hx, ... , hn}, hx < ■■■ < hn,

form a d -sequence we may argue inductively modulo a subideal {hx, ... , hm} .

Therefore it is enough to show: if a/z. ^ 0, a e R, j > 1, then ahxhj ^ 0.

Consider the standard representation a/z = Y bMM, M a standard mono-

mial. Since every M has to start with a factor < h., hence with one among

hx, ... , h j, hx M is again a standard monomial, and ah jhx =YbmhxM is the

standard representation of ahjhx.

(b) The hypothesis implies that the coefficients of the 1-forms, among the

generators of the representation ideal / of 32(1) axe contained in ///?. If

there are incomparable elements h, k e fí, then there is a 2-form with a unit

coefficient in J.   D

Since J is generated by its forms of degree < 2, the equality of 5^(1) and

32(1) can be replaced by the weaker equation S* (I) = / . Ideals with the

latter property were called syzygetic in [SV], and they are precisely the ideals

for which the deformation functor T2    , S = R/I, vanishes.

Let /? be a graded ordinal Hodge algebra on a poset H and let fíe/? be

an ideal. Set / = fí/?. In general gr/(i?) is not an ordinal Hodge algebra as

the following simple example indicates: H = A(X), with X a generic 3x3

matrix and fí C H the ideal consisting of the 2-minors and the determinant

8 of X. Letting * denote leading form in gx{(R), one has 8 0 / , so 3* e

/// c gx,(R). On the other hand, a typical straightening is [12|13][13|12] =

[12|12][13|13] - 8XXX , which, incidentally, shows that fí is not straightening-

closed. By manipulating this relation and its conjugates, one sees that S e / ,

so (8*)2 = 0. For straightening-closed ideals the situation is much better.
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(2.2.3) Lemma. Let R be a graded ordinal Hodge algebra over B on a poset

H and let fí c H be a straightening-closed ideal. For I = fí/?, the filtration

{/"} is a standard filtration (in the sense o/[DEP, §2]).

Proof. It suffices to show that, for every n > 0, /" is the 5-submodule of R

generated by all standard monomials in H with at least n factors from fí.

Thus one has to show that every standard monomial appearing in the standard

representation of a monomial containing at least n factors from fí, contains

at least n factors from ñ, too. For this one introduces a sort of coheight

function: For an element h e H ,set v(h) = #{g e H\g > h} . By a descending

induction, using the measure 2W( ', by the fact that a standard representation

of a monomial is obtained by successively applying the straightening to two

incomparable elements, and by the defining property of a straightening-closed

ideal, one is through with the claim.   D

(2.2.4) Proposition. Let R be a graded ordinal Hodge algebra, and let fí be a

straightening-closed ideal in the defining poset H of R. If I = fí/? then gx¡(R)

is a graded ordinal Hodge algebra on the poset H* of the corresponding leading

forms.

The proposition is a well-known consequence of the lemma ([DEP]; cf. also

[BV, (9.8)]).

(2.2.5) Corollary. Let R be a graded ordinal Hodge algebra over B on a poset

H. Let fíe// be a straightening-closed ideal and I = fí/?.

(i) If B is reduced, then gr7(/?) is reduced.

(ii) If B is Cohen-Macaulay and if H is wonderful, then gx{(R) is Cohen-

Macaulay.

Proof, (i) is well known [DEP]. As for (ii), again by [DEP], it suffices to remark

that H and H* are isomorphic posets.   D

2.3. Filtrations of powers of straightening-closed ideals. In this section we in-

troduce nitrations for the powers of /, where / is an ideal of a graded ordinal

Hodge algebra /? generated by a straightening-closed ideal in the defining poset

H of R. Similar filtrations were considered by Huneke [Hu 2].

For h £ H set w(h) = 2"( ', where v(h) is defined as in the proof of (2.2.3).

For a monomial M = hx---h we further set w(M) = J2w(h¿). More gen-

erally, for any integer n > 0, introduce a function wn(M) = Y™fn'p) w(ht),

where we assume that w(hx) >••• > w(hp).

(2.3.1) Lemma. Let R be a graded ordinal Hodge algebra and let M = Y1 bjMj

be a standard representation of the monomial M. Then w^M^ > wn(M) for

all i, n .

Proof. We proceed by descending induction on w (M).   If M is standard,

there is nothing to prove.   Otherwise,  M = hx--h   with, say, ht and /*

incomparable (i < j). Let h¡hj =Yb¡(Afk be their straightening. Then

M = y£bk(hx---hi---hj---hp)Nk
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and one clearly has w((hx ■ ■ ■ hi, ■ • • h. • • • hp)Nk) > w(M). Applying descending

induction, it remains to verify

wn((hx---hr.-hr..hp)Nk)>wn(M),

which can be done by analysing the cases where /, j < n, i < n < j, and

n < i, j , respectively.   D

Let, as before, R be a graded ordinal Hodge algebra on a poset H. The

length of a monomial in H is the number of its factors from H. Given a

straightening-closed ideal fíe//, one sets

fí(n) = {M j M a standard monomial of length n in fí}.

The set fí     can be partially ordered by decreeing:

M < N o M = N   or   w(M) <w(N).

Further, for a standard monomial M = hx---h , hx < ■■■ < h , one puts

a(M) = hx, œ(M) = hp and, more generally, a¡(M) = hx • • • hmiTi{ip), cot(M) =

product of the remaining factors of M (so that M = ai(M)coi(M)). The tail

coideal associated to the standard monomial M is

m(M) = {h e H | h < co(M) or h, œ(M) are incomparable}.

(2.3.2) Proposition. For every n > 1, the ideal In (I = fí/?) has a finite

filtration by ideals whose quotients are cyclic R-modules of the form /?/1/(/z)/?,

/zefí.

Proof. One defines the general term of the filtration as follows:

Jj = ®BM,
M

where M runs through the standard monomials such that an(M) € fí(n) and

wn(M) > j . First one observes that if M is an arbitrary monomial in H such

that M s /" and wn(M) > j, then M e J j—this follows from (2.2.3) (or

rather from its proof) and from (2.3.1). Next, 7 is indeed an ideal of R . For

this it suffices to show that H M e /. for any standard monomial M e J¡.

Let h e H. By the earlier observation it is enough to have h M e In and

wn(hM) > j . But the first is clear, while wn(hM) > wn(M) > j .

We next show: if M 6 fí(,!) and wn(M) = j then ¥(M)M C Jj+X. Let

h € *V(M). Every standard monomial in the standard representation hM -

Y,bNN satisfies an(N) e fí("' by the proof of (2.2.3). It remains to show that

wn(N) > j + 1 for all these standard monomials. Assume first that h < œ(M).

Then wn(hM) = wn_x(M) + w(h) > wn_x(M) + w(œ(M)) = j, and one is

through by (2.3.1). Otherwise h and co(M) axe not comparable; let hoj(M) =

YbjNi be the standard representation. Then

hM = YJblan_{(M)a(Nl)cox(Ni)

and a(Nt) < co(M), in particular wn(an_l(M)a(Ni)a>l(Ni)) > wn(M) as

above. Now one applies (2.3.1) again.
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Finally, we claim that there is an isomorphism of /?-modules

V//+1-     ©    R/V(M)R.
Mea{n)

wn(M)=j

Take the free /?-module on the basis {eM} , M e fí(M), wn(M) - j, and define

a surjective map n:F —> Jj/Jj+X by ^-»M. The preceding claim shows that

($R}¥(M)eM c Ker(7t). Moreover, a comparison of bases yields that, as B-

modules, / = J.+i © K, where K is generated by the standard monomials

N = an(N)con(N) such that an(N) e fí1"' and wn(an(N)) - j. Necessarily,

a((on(N)) > (œ(an(N)) if œn(N) ¿ 1. Thus, for fixed M = an(N), the tails

con(N) axe exactly the standard monomials which constitute the standard basis

of R/XV(M)R.   U

As a consequence, the modules Im/In admit similar filtrations:

(2.3.3) Corollary. For every n > m, the module Im/In has a finite filtration

whose quotients are cyclic modules of the form /?/(fí U *¥(h))R, h € fí or, if

m = 0, /?//.

Proof. It is clearly enough to display such a filtration for the «th conormal

module l"/In+    (n> 1). Consider the filtration (/) constructed in the proof

of (2.3.2) and set 1. = (Jj + In+l)/r+i. For the induced surjection ñ:F -> 1}

one has 0^(fí U *¥(M))ReM c Ker(7t). Comparing standard bases yields

equality.   D

(2.3.4) Remark. Under the assumption of (2.3.2), suppose that B isnoetherian

and let S = R/I. We claim: for every P e Ass 5, the Sp-module (In/In+l)p

is free. S is a graded ordinal Hodge algebra over B . This implies that S <g>

B/Q, Q = B n P is reduced, and together with the flatness of the extension

B -> S one easily obtains QSP = PSp . Note that /"//"+1 is a free .B-module

by the proof of (2.3.3). Setting r, = BQ, T2 = Sp, M = (I"/In+i)p, we

are left with the following situation: Tx —► T2 is a flat local homomorphism

such that m, T2 = m2 for the maximal ideals mx and m2 respectively, and the

finitely generated T2 -module M is flat over Tx . Then it is easy to see that M

is flat over T2, hence a free T2-module (cf. [Ma, (20.G)]).

3. Main theorems

3.1. Powers of straightening-closed ideals are primary. We define the symbolic

powers of an ideal / c /? by / = {x e R | yx e I" for some non-zero-divisor

y on R/I}. The symbolic Rees algebra of / is the graded /?-algebra

32(I) = /?©/© /(2) © /<3) © • • • .

A question that has called the attention of several algebraists in recent years,

is to find sufficient conditions for the equality 32(1) = 32    .  The following
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simple examples may indicate that this is a hard problem, even in the context

of graded ordinal Hodge algebras, since not just the nature of the poset, but also

that of the straightening relations plays a role. Let A: be a field, /? = k[x, y, z]

a graded ordinal Hodge algebra on the poset {x, y, z}, partially ordered by

z < x, z < y, and fí = {x, z}.  If xy = 0 (the discrete case), then x e
(7.)      1 1 (1\      1

r '\I . Similarly, if xy = z , then x e I \I . If, however, xy = z, then

32(I)=32{I).

The best possible general result seems to be following theorem. In a slightly

different set-up it goes back at least to [Hu 2] and is based on the tail coideal

filtrations of (2.3).

(3.1.1) Theorem. Let B be a noetherian ring and R a graded ordinal Hodge

algebra on a poset H. Let fíe// be a straightening-closed ideal and I = fí/?.

The following conditions are equivalent:

(i)   I" = I(n) for every n > 0.

(ii)   Ip = (Ip)     for every n > 0 and for every associated prime ideal P of

any of the rings /?/(fí U *¥(h))R, heil.

Proof, (i) => (ii) We must prove the torsionfreeness of (In/In+ )Q over

(R/I)Q, Q = P/I, for at least the prime ideals P named in (ii). Let M =

In/In+l . Since MQ is a free ^-module for Q e Ass S by (2.3.4), the torsion

of M coincides with the kernel of the natural homomorphism of M into its

5-bidual, and the formation of the latter commutes with localization.

(ii) =>■ (i) One has to show that if a prime ideal P c /? is associated to /?//"

for some n , then P is also associated to R/I. At any rate, I c P. From the

exact sequence

0 - ///" -> /?//" - R/I - 0

and (2.3.3), one has

Ass/?//" c (Ass/?//)U (J AssR/(Qu¥(h))R.   D
/¡en

Under "regularity" assumptions it has recently been proved that the equality

32(1) = 32{I) takes place if gr7(/?) is reduced [HuSV]. Thus, straightening-

closed ideals provide a natural environment under which the above equality

holds, since their associated graded rings are reduced over reduced rings of

coefficients, cf. (2.2.5).

(3.1.2) Theorem. Let B be a reduced noetherian ring, let R be a graded ordinal

Hodge algebra over B on a poset H and let fí c H be a straightening-closed

ideal. Set I = fí/?. Suppose that the following conditions hold:

(i)   R/I has finite homological dimension over R.

(ii)   R is locally formally equidimensional.

Then /" = I(n) for every n > 0.
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As we will see below, one can first pass from B to the residue class fields

(B/p) , p a prime ideal in B, before applying (3.1.2); thus, one may essentially

assume that B is a field. Then B is reduced, condition (ii) usually holds, and

(i) is satisfied if /? is a polynomial ring over B .

3.2. Arithmetic of blowups of straightening-closed ideals. One of the general

questions posed in [ST] is the computation of the divisor class group of a normal

Rees algebra. The results obtained there can be applied in the present situation.

(3.2.1) Theorem. Let B be a normal domain and let /?,//, fí, / satisfy the

hypotheses of (3.1.2). Then the Rees algebra 32(1) is normal and C\(32(I)) ~

Cl(/?)©Zr, where r is the number of associated primes of R/I of height at least

two.

Proof. Since gx¡(R) is reduced and /? is normal, 32(1) is normal. Since

R/I is reduced and of finite homological dimension, the localizations Rp,

P e Ass/?//, are regular. On the other hand, by (3.1.2), gXj(R) is torsionfree

over R/I. In this case, the required expression for Cl(32(I)) has been given

in [ST].   D

In the absence of a condition of regularity, such as conditions (i) and (ii) of

(3.1.2), one still has, quite generally, an exact sequence of divisor class groups

0 -v F -> Cl(32(I)) -» Cl(/?) -* 0,

where F is freely generated by the classes of the height one primes containing

132(1) whose contraction to R have height at least two [ST]. The questions of

computing the rank of F and of determining general conditions under which

the above sequence splits has been treated in [HSV 2]. We next provide a

different approach for the splitting question in the context of Hodge algebras.

Recall Samuel's condition (PDE) [Fo, p. 30] for an inclusion of normal do-

mains B c A: if P c A is a height one prime then the height of P n B is at

most one. We introduce one further notion: the extension B c A is unramified

in codimension one if, for every height one prime p c B , either pA   is a prime

ideal of A„ or else pAn = A„.p y  p       p
The following lemma may be found in the standard literature, although we

lack an adequate reference.

(3.2.2) Lemma. Let B c A be an extension of normal domains which is un-

ramified in codimension one and satisfies the property (PDE). Then there is a

natural exact sequence

C\(B) -U C\(A) -£♦ Cl(ABy) - 0.

// A is a graded B-algebra such that B = A0, then the map Cl(B) -> Cl(^4) is
injective.

Proof. As a consequence of (PDE) there is a natural map Cl(5) -^ Cl(A) de-

fined by

i(clB(p))=   ¿2  v(P/p)clA(P),
PnB=p
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where pAp - pvp(plp). The ramification condition implies that either i(c\B(p))

= 0, or else there is a single prime P c A lying over p and v(P/p) = 1,

in which case i(clB(p)) = clA(P). Now, let k be induced by taking fractions.

Then Ker/c is generated by {cl^(P) | P n B ^ 0} and, from what we have

just seen, it coincides with Im i. The second statement is [Fo, Proposition

10.7(c)].   □

(3.2.3) Corollary. Let R be a graded ordinal Hodge algebra over B on a poset

H, and let I c R be an ideal generated by a straightening-closed ideal in H.

Assume:

(i)   /? is a normal domain and the extension B c R is unramified in codi-

mension one.

(ii)  C1(/?B,0) is a free Z-module.

Then 32(1) is normal and C\(32(I)) ~ Cl(B) © Zr+S, where r is the number of

minimal primes of gXj(R) whose contraction to R have height at least two and

s - rankCl(/?m0).

Proof. We first apply [ST, 3.1]. One has a natural commutative diagram

0   -+    F    -»        C\(32(I))       -»      Cl(/?)      -»   0

I I I
0   -   F1   -»   Cl(32BX0(IBX0))   -,   C1(/?BX0)   -»   0

whose bottom row splits by hypothesis. Observe that, for every prime ideal

P c 32(1), P e Ass(gr/(/?)), the intersection PV\B is 0, since gx¡(R) is a free

5-module. Therefore these prime ideals correspond bijectively to the analogous

ones in 32B,0(IB<0). Hence the map F —► F' is an isomorphism, and one

obtains the splitting Cl(32(I)) ~ C\(R) © F .
The extension B c R satisfies (PDE) since /? is a free 5-module. Now

(3.2.2) yields that Cl(/?) ~ Cl(fl) © Cl(RBX0).   O

We will observe in §4 that the hypotheses of (3.2.3) are satisfied in many

important cases. Nevertheless it would be interesting to find more general con-

ditions under which Cl(/?) splits off Cl(32(I)).

The question as to when the associated graded ring gx,(R) is Gorenstein has

been considered by various authors. A specialization of [HSV 2, 4.2.2] to the

present situation yields the following result:

(3.2.4) Proposition. Let B be a Cohen-Macaulay normal domain and a residue

class ring of a Gorenstein ring, and let R, H, fí, / satisfy the hypotheses of

(3.1.2). Suppose moreover that H is a wonderful poset and fí is a self-covering

ideal containing all the minimal elements of H. Then the following conditions

are equivalent:

(i)   gXj(R) is Gorenstein.

(ii)   /? is Gorenstein and I is unmixed.
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Proof. By (3.1.2), gr^Z?) is torsionfree over R/I, and, by (3.2.1), 32(1) is

normal. The hypothesis on H and fí implies that 32(1) is Cohen-Macaulay,

cf. [BV, (9.12)]. Now [HSV 2, 4.2.2] can be applied.   □

3.3. Depth bounds for powers of straightening-closed ideals. As before, let R

denote a graded ordinal Hodge algebra over a noetherian ring B on a poset

H. For a graded /?-module M, depth M will denote the length of a maximal

M -sequence in HR .

(3.3.1) Proposition. Let fíe// be a straightening-closed ideal and I - fí/?.

Then:

(i)  depth /" > minAe£i depth R/V(h)R.

(ii)   depth/?//" > min{depth/?, minAe£î{(depthR/V(h)R - 1)}}.

The depth bound in (ii) holds for In/In+l as well.

Proof, (i) is a direct consequence of (2.3.2). (ii) follows from (i) in the obvious

way. Since minw depth/"//""1" = minn depth/?//", the last statement of the

proposition is also clear.   D

In the case of a wonderful poset it is possible to express the depths of the

powers directly in terms of invariants of fí and //; cf. [DEP, §8] for the facts

needed below.

(3.3.2) Corollary. Moreover, let H be wonderful. Then:

(i)   depth/" >rk//-rkfí+ 1,

(ii)   depth/?//" >rk//-rkfí.

The bound in (ii) holds for the higher conormal modules /" //"+1 as well.

Proof. As before it suffices to prove (i). Now /?/¥(/?)/? is a graded ordinal

Hodge algebra on //\¥(A) and maximal chains in wonderful posets have the

same number of elements. Therefore rk H\¥(h) = xkH-xkh + l. Furthermore

HyV(h) is again wonderful. The result follows from well-known properties of

wonderful posets: (Hy¥(h))R/y¥(h)R contains an /?/*î'(/î)/?-regular sequence

of length xkHy¥(h).   D

Even for wonderful posets the preceding inequalities may be strict for all

values of n . Here is a simple instance: /? = K[X], with X a 2 x 2 matrix of

indeterminates, H = {all minors of X) and fí = {Xxx, Xx2, detX) . One has,

however,

(3.3.3) Theorem. Let R be a graded ordinal Hodge algebra over B on a won-

derful poset H. Let fí c H be a straightening-closed ideal such that:

(i) The standard monomials occurring in the straightening relations of R

have at most two factors.
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(ii)  With respect to the graduation of R, the elements of fí have the maxi-

mal degree occurring among the elements of H.

Then min depth/?//" = xkH - rkfí.

Proof. First we want to reduce the problem to the case in which B is a field.

Using the local description of depth, one has to determine the minimum of

depth(R/In)p over all n and all prime ideals P D HR. Let p = P n B and

K(p) = (B/pB)p . Since /?//" is 5-flat (in fact, 5-free) one has

depth(/?//\ = depth((/?//") ® K(p))p/pR) + depth/?p.

So it is obviously enough to show that depth(/?//" <g> k(p)) = xkH - rkfí for

every prime ideal p of B . Observing that under the present circumstances the

formation of /?//" commutes with the base change from B to k(p) , we may

in fact assume that B is a field. Then P = HR.

Let S c R denote the 5-subalgebra generated by the elements of fí. The

fact that fí is straightening-closed and condition (i) imply that every monomial

in the elements of fí is a linear combination of standard monomials consisting

of factors from fí only. Thus S is a Hodge subalgebra of /? in a natural

way. Letting //* and fí* denote the corresponding poset and ideal in gr7(/?),

the Hodge 5-subalgebra of gr7(/?) generated by fí* is naturally isomorphic to

S : the straightening relations for products hk, h , k e il, axe homogeneous

with respect to the filtration defined by the powers of /, and thus carry over

unchanged to gx¡(R). Identifying these two algebras, we conclude that S is

a homomorphic image of the residue ring gx ¡(R) / Hgx ¡(R). But, from general

facts of Hodge algebras, one has dim S = dim B + rkfí, cf. [BV, (5.10)] for
example. Therefore

dim gXj(R)/Hgx,(R) < dixxiB + rkfí = rkfí.

We claim that under conditions (i) and (ii) equality takes place, since actually

S ~ gx,(R)/Hgx,(R)). One has to show that (//gr7(/?)) n S = 0 and for this

it suffices that every standard monomial in the standard representation of an

element of HgXj(R) contains a factor from H*\il*, equivalently, that every

standard monomial M appearing in a straightening relation of gr7(/?),

hk = J2bMM,

with h e H*\il*, contains at least one factor from //*\fí*. Since this equation

is homogeneous in the graded ring gr¡ (/?), a standard monomial M can have

at most one factor from fí*. If k e H*\iT , too, then every M consists of

factors from H*\il* only. Otherwise M must have two factors because of

conditions (i) and (ii): the straightening relations of gx,(R) axe derived from

those of /? by homogenization with respect to the filtration {/"}, and if one

of the factors is an element of maximal degree, then every monomial on the

right-hand side must have exactly two factors.
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To complete the proof of the theorem, one observes that gx,(R) is Cohen-

Macaulay over a field B and recalls the equality

min depth/?//" = dim gr7(/?) - /(/)

whenever gr7(/?) is Cohen-Macaulay (cf., e.g., [EH]). In the present context the

analytic spread /(/) is simply given by dim gxI(R)/HgxI(R).   D

4. A STRAIGHTENING-CLOSED ZOO

In this section we describe the most common appearances of straightening-

closed ideals. The list is certainly short of being complete. For the ring-theoretic

properties to be discussed one should note that it is enough to consider the case

in which the ring B of coefficients is a field. All the ideals considered below,

more precisely the residue class rings, associated graded rings and Rees algebras

they define, are obtained for general B from those over the integers Z by

base change, and the latter are faithfully flat, in fact free Z-modules, since they

are Hodge algebras. Cf. [Ma] for the property "Cohen-Macaulay", [Wa] for

"Gorenstein", [BV, 3.C] for "reduced", "integral domain", and "normal".

4.1. Virtual maximal minors in determinantal rings. These ideals were intro-

duced in (2.1.5). Here we want to restrict ourselves to the subclass given by

/ = (Is(X\w) + IS+X(X))/IS+X(X) c R = B[X]/Is+l(X),

where X is an mxn generic matrix, 1 < s < min{w, n} and (X\w) denotes

the submatrix consisting of the first w columns of X, s < w < n . Note that

the ordinary maximal minors are obtained when 5 = min{m, n} and w — n .

The rings R/I axe determinantal rings in the sense of [BV] and therefore share

the properties of being reduced, an integral domain, normal, or Cohen-Macaulay

with B.

(4.1.1) Proposition. Let I c R be the ideal of maximal minors just defined.

Then:

(i)   32(1)   and gx¡(R)   are graded ordinal Hodge algebras on wonderful

posets.

(ii)   gx¡(R) is R/I-torsionfree (equivalently, I   = /( ' for all k), and

k
min depth/?//   = min{ra, n}s - 1.

(iii)   gXj(R) is Cohen-Macaulay, reduced or a domain along with B.

(iv)   gx,(R) is Gorenstein if and only if R is Gorenstein, i.e., if B is Goren-

stein and s = xnixi{m, n} or m = n .

Suppose now that B is a normal domain. Then:

(v)  32(1) and gXj(R) are normal domains.

(vi)   Cl(^(/)) ~ C\(B) © Zr and Cl(gr7(/?)) ~ C\(B) © Z", where

r= <

0, for w — s = min{m, n),

2,   for w < s < xnin{m, n},     u= <

1, else,

0, for 1 = s = min{ra, «},

2,   for 1 < s < min{m, «},

1, else.
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Proof. For gx¡(R) part (i) follows immediately from the results of subsection

2.2, and for 32(1) one applies [BV, (9.11)]. The first part of (ii) can be reduced

to the case of a field B by the same technique as employed in the proof (3.3.3),

which, together with an easy computation of rk fí, implies the second part of

(ii). (Of course fí denotes the poset ideal generating /.) By what has been said

above, the assertion in (iii) regarding reducedness and integrality follows from

(v). The Cohen-Macaulay part is covered by (i). For (iv) one again reduces

the problem to a field of coefficients first. By (iii), gr7(/?) is a Cohen-Macaulay

domain and [HSV 1, (3.7)] can be applied: wG ~ gx¡(coR). In particular coG

is cyclic if and only œR is cyclic.

(v) One may assume that B is a field. Furthermore the integrality of gr7(/?)

implies the normality of 32(1). For gr7(/?) we use an inductive method which

will also yield (vi). The crucial arguments are provided by the following lemma.

(For a ring S, an ideal J, and an ¿'-module M we denote the length of a

maximal A/-sequence in J by grade(/, M), and grade/ = grade(7, /?).)

(4.1.2) Lemma, (a) // s = 1, then gr7(/?) ~ R.

(b) If s> I, then

gx}(R)[(x*xxfl] *pj(S)[Xu, ... , XXn,X2x,..., Xml,X~l],

S = B[Y], Y an (m - 1) x (n - 1) matrix of indeterminates and

J = (Is_x(Y\w-l) + Is(Y))/Is(Y).

(c) Suppose that s > 1. Then, K denoting the ideal generated by the x*} e

R/I • 1 < j < w, one has

gxadeKgXj(R) = min gxade(K, I*/Ii+l) > 3.

Proof, (a) Both gr7(/?)  and R axe residue class rings of B[X] with respect

to the assignments Xi} —► x*- and Xi} —► x(j respectively. In both cases the

defining ideals are generated by the straightening relations, and these obviously

coincide.

(b) In order to obtain the isomorphism, one performs elementary transfor-

mations on the matrix X after the inversion of Xxx—see [BV, (2.4)] for a

prototype of the argument.

(c) Again one may assume that B is a field. The equality claimed is ele-

mentary, and for the inequality one may replace /'/Il+ by the factors Rw =

R/(*¥(œ)R + I) of its filtrations obtained in the proof of (2.3.3), œ running

through the generators of /. This amounts to showing grade KRW > 3 for all

œ. We translate the present notations into those introduced in (2.1.5), using U

to denote the join operation in the lattice A(X) and K for the preimage of K

in /?:

' [1,... ,s\\,... , s- 1, w+ 1],
for w < n ,

[1, ... ,s- 1|1, ... ,s- 1],

for w = n,

R/I = B[X]/I(X;e),    e
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Rw = B[X]/I(X;0, C = euœ,

( B, for w - n,
R/K=\   Bryl/fiv     ï      , ti = [l,...,v\w + l,...,w + v],

{ B[X]/I(X; n), eise,

v - xnixi{s, n -w},

—      —       ( B, for w = «,
RrJKR,=\ ' û = nUœ.

wl      w     \ B[X]/I(X,û), else, '

All these rings are Cohen-Macaulay, cf. [BV, (5.17)]. Therefore

grade KR,, = dim/?,, - dim R,JKR„.

Let œ = [ax,..., as\bx,... , bs] and observe for the inequalities to be discussed

that bx<w-s+l,...,bs<w.

We first dispose of the case in which w = n . Then

C = [ax,...,as_x\bx,...,bs_x],    RJKRW = B,

and, by [BV, (5.12)],

s-\

grade KR~W = dimRw = (m + n)(s - 1) - ^(a,. + b¡) + s -I

i=i
j-i

> 2^2(s -i) + s-\ =s2 -I >3.
i=i

Next let w < n and v = s. Applying the same dimension formula, one gets

i-i

gradeKR~U = ^(w + i - b¡) + (w + s) - (w + 1) > s2 - 1 > 3.

î=i

Finally suppose that w < n , v < s. Then t) = [ax, ... , av\w + l, ... ,w + v].

We put Ç - [ax, ... , av\bx, ... , bv]. Obviously xkÇ-xkÇ>s-v and rkû-

rkC = EÎLi w + i-b¡>vs, altogether grade KRW = dimRw - dim'RJKR^ =
xkû - xkÇ > s - v + vs > 3 .    D

Continuing the proof of (4.1.1)(v) we observe that, for 5 = 1, the normality

of gXj(R) follows from the normality of /? by (4.1.2)(a). Let s > 1. Applying

Serre's normality criterion it is sufficient to show that (gx¡(R))p is a regular

local ring for all prime ideals P of gr7(/?) such that depth(grj(R))P < 1.

By (4.1.2)(c) P cannot contain K. Thus there is an x*., j < w , such that

x*j £ P. For symmetry reasons one may assume x*¡ = x*x . Then (4.1.2)(b)

reveals that (gx¡(R))p is a localization of a ring which, by induction, is normal.

So (gXj(R))p is normal, equivalently, regular.

The assertion on Cl(^(/)) in (vi) follows at once from (3.2.3): For every

prime ideal p of B the extension pR is even prime, for /? is a domain over

a domain of coefficients; Cl(RB. 0) = 0 for s = min(m, n), Cl(/?ß> 0) = Z else

[BV, (8.4)]. Furthermore the single minimal prime ideal 0 of gr7(/?) contracts

to /, and / has height 1 if and only if w - s. In order to compute Cl(gr7(/?))

we need another lemma.



524 WINFRIED BRUNS, ARON SIMIS, AND N. V. TRUNG

(4.1.3) Lemma, (a) If s = 2, then x*x  is the intersection of two height one

primes Qx and Q2 in gr7(/?), and Zcl(g,) = Zcl(Q2) SZ.

(b) If s > 2, x*x is a prime element in gx¡(R).

Before showing (4.1.3) we complete the proof of (4.1.1). By (4.1.1)(iii)

(which has been proved already) the extension B -> gr7(/?) is unramified in

codimension one; thus we may invert B\0 and henceforth assume that B is a

field. Now induction on s based on (4.1.2)(b), (4.1.3)(b), and Nagata's theo-

rem reduces the case 5 > 2 to the one in which 5 = 2. If 5 = 2 we can again

use Nagata's theorem to obtain an exact sequence

0 - Z -> Cl(gr7(/?)) -» Cl(gr,(S)) - 0

from (4.1.2)(b) and (4.1.3)(a), hence we are left with the case 5=1, settled by

(4.1.2)(a) and [BV, (8.4)].   D

Proof of (4.1.3). Let G = gr7(/?), x = x*u . (a) We first show that G/Gx is

reduced. It is enough to prove that the localization (Gx)p is a radical ideal for

all P e AssG/Gx. Because of (4.1.1)(c), P cannot contain all the elements

x*j , j <w . Invert x*. first. Then by (4.1.2)(b) (Gx)p is a prime ideal if i = 1

or j = 1. Otherwise

(*) *n=*/iW

is a product of two prime elements in C7[(x* )~ ], more than needed to make

(Gx)p a radical ideal.

Since x*2x21 e Gx , Gx cannot be prime. By the argument just given, there

is a single Qx e Ass G/Gx such that x*2 £ Qx and a single Q2 e Ass G/Gx

such that x21 £ Q2. Necessarily Qx / Q2. Suppose there is a third prime ideal

P e Ass G/Gx and take x*   as above such that x* 0 P. Then the equation

(*) implies that xu eP(),a contradiction to the fact that (Gx)p is a radical

ideal.

In order to prove that Zcl(Q,) = Z one uses the same "unit trick" as in [BV,

p. 94].
(b) We first show that the extension of Gx to G[(x*) '] is prime for all

i, j, J < w ■ For i = 1 or j = 1 this follows as above. In the remaining case

we have

x = x;i=±y*j + XnX-lXlj,

identifying the rings in (an appropriate version of) (4.1.2) (b). Now y* is not

a zero-divisor in gx¡(S), thus y*¡, XiXX~j   is a regular sequence in

gXj(S)[Xxx, ... , xu,... , xXn, X2X, ... , XmX, Xu ].

Adding the indeterminate X^ we conclude that x indeed generates a prime

ideal in C7[(x* )~ ].

As in (a) Gx must be a radical ideal. Let Q e Ass G/Gx. Then there is

an x* £ Q, j < w , and Q is the single element of Ass G/Gx not containing
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x* . Suppose there is a second associated prime P and choose x*uv accordingly.

Then x*uv e Q and x*uv e xG[(x*)-1]. To put it differently: (xy)'j£„ e Gx

for sufficiently high e. For reasons of homogeneity we can replace G by its

component R/I and obtain a contradiction to the fact that xn is a prime

element in R/I, cf. [BV, (12.6)] or [HE],   o

4.2. Maximal minors fixing a submatrix. This example has been briefly men-

tioned in (2.1.4). As before, X stands for an m x n matrix of indetermi-

nates over a commutative ring B. We assume m < n and fix an integer r,

1 < r < m ; note that the (trivial) case m = r is covered by (4.1.1). The poset

ideal Fr(X) in question (cf. (2.1.4)) is the intersection of the poset ideal of all

minors of X involving the submatrix (X\r) consisting of the first r columns of

X and the poset ideal of all maximal minors of X. Therefore, by a standard

principle in Hodge algebra theory,

Jr(X) = Ir(X\r)nln(X)

where Jr(X) = Fr(X)R and R = B[X]. In particular, if B is reduced (resp. a

domain) then Jr = Jr(X) is a radical ideal (resp. AssR/Jr - {Ir(X\r), In(X)}

and Jr is generically a complete intersection).

(4.2.1) Proposition. The following statements are equivalent:

(i)   Jr is of linear type, i.e., S?(J) a 32(1).
(ii)   m = n + 1 or n = r + 1.

This follows very easily from (2.2.2).

(4.2.2) Proposition. Let B be a noetherian ring. Set R = B[X] and I = Jr.

Then:

(i)  32(1)  and gr7(/?)  are graded ordinal Hodge algebras on wonderful

posets.

(ii)   gXj(R) is R/I-torsionfree; equivalently, I   = T ' for all k.
(iii) If B is Cohen-Macaulay, 32(1) and gx¡(R) are Cohen-Macaulay. If B

is reduced, gx,(R) is reduced, too.

(iv) If B is Gorenstein, gr7(/?) is Gorenstein if and only if n = (m + r)/2.

(v) If B is a normal domain, 32(1) is normal and C\(32(I)) ~ C\(B)®Z2.

Proof. As in the proof of (4.1.1 ) one reduces everything to the case of a field

B of coefficients first. For (i) and (iii) one argues as for (4.1.1). For the rest of

the statements we can now even use that R/I has finite projective dimension

over B[X]—B is a field. The torsion-freeness of gx,(R) follows immediately

from (3.1.2), and for the Gorenstein property and (v) one applies (3.2.4) and

(3.2.3) respectively.   O

See [AS 1 ] and [AS 2] for a more detailed investigation of some special classes

of ideals of minors fixing a submatrix.

The last result concerns the arithmetical rank ara Jr, i.e., the minimal number

of elements that suffice to generate Jr up to radical. By a well-known fact of
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the combinatorics of determinants, it is easier to treat the Grassmannian G(X)

first rather than the polynomial ring B[X], where, with the notation introduced

in (2.1.6), G(X) is the 5-subalgebra of B[X] generated by the maximal minors

of X. For example, since G(X) is a symmetric Hodge algebra, one has [BV,

(5.22)]
axaFr(X)G(X) = rkTr(Z) = (m - n)(n - r) + 1.

In general it is not clear how the arithmetical rank behaves under an extension

of Hodge algebras. However, with the extra requirement of characteristic zero,

a cohomological argument, going back to Höchster [BV, (7.12)], works to give

the exact value of ara Jr.

First, we have the following lemma, regardless of any assumption on the

characteristic.

(4.2.4) Lemma. Let T(X) c G(X) denote the B-subalgebra generated by the

elements of Fr(X). Then T(X) is a direct T(X)-summand of G(X).

Proof. Let C be the 5-submodule of G(X) generated by the standard mono-

mials having a factor outside T(X). Clearly C is a direct 5-summand of G(X)

with complement T(X) and it remains to see that it is also a r(X)-submodule

of G(X). For this it suffices to show that, given a standard monomial p e C

and an element 8 e Fr(X), the standard representation pS = Y^uavv ^s

such that every monomial u contains a factor not belonging to T(X). More-

over, since the standard representation is obtained by repeated applications

of the straightening relations, the argument boils down to showing that, if

£r/ = Ylv avv x% a straightening in G(X) such that some monomial v has

two factors from T(X), then all remaining monomials have two factors from

T(X) as well. But the latter follows easily from the statements (i) and (ii) in

(2.1.3) on the straightening law in B[X].   D

(4.2.5) Theorem. If there is a homomorphism B —► K, with K a field of char-

acteristic zero, then axaJr — (m - n)(n - r) + 1.

Proof. Note that axaJr < axaFr(X)G(X) = (m - n)(n - r) + 1. Therefore one

can assume that B = K. By (4.2.4), T(X) is a direct r(Z)-summand of G(X)

and G(X) is a direct G[Z]-summand of K[X], cf. [BV, 7.D]; altogether T(X)

is a direct r(JY)-summand of K[X]. Fr(X)T(X) is the irrelevant maximal

ideal of T(X), and arguing with cohomological dimension one shows easily

that ara/r > dim T(X) = rkTr(Z), cf. [BV, (7.12)] for the details.   D

4.3. The two by two minors as an extended Rees algebra. The representation

discussed in this topic depends on example (2.1.7). Referring to the notation

there, one has

(4.3.1) Lemma. Let R = B[X, Y] and I = ilR. Set H = H* U {t~1}, where,

as usual, H* stands for the poset ofleading forms and t~ is decreed the greatest

element of H. Then

(i)   R[It, /"'] is a graded ordinal Hodge algebra on H over B.



STRAIGHTENING-CLOSED IDEALS 527

(ii) R[It, t~l] ~ B[T]/I2(T) as graded Hodge algebras, where T is an

(m + 1) x (n + 1) matrix of indeterminates over B and the isomorphism

is defined by

T.j h-> X¡Yjt,        i = I, ... , m, j =1, ... ,n,

T   , • i—► Y .        T■    , i—* X..     T    ,    , i—► t
m+lj j' in+l I' m+lii+1

■1

>-ln
Proo/. (i) By a standard argument [DEP], R[It, t ] is a graded ordinal Hodge

algebra on //* over B[t~l], hence it is a graded ordinal Hodge algebra on H

over 5. (ii) The defined assignment induces a (surjective) homomorphism

since the 2x2 minors of the matrix

(XxYxt    ...    XxYnt    Xx\

Vi<   ••■   XmYnt   Xm

V  y,     ...     Yn    r1;

vanish under this assignment. On the other hand, the relatins so-obtained are

exactly the straightening re

morphism is injective.   D

exactly the straightening relations of R[It, t '] over B. Therefore, the homo

As a consequence of the above presentation, one recovers, quite indepen-

dently, some of the main classical results about 2x2 generic minors. We

collect some of these in the following proposition.

(4.3.2)  Proposition. Let B  be a noetherian ring, and let  T be a generic

(m + 1) x (n + 1) matrix over B. Then:

(i) dimB[T]/I2(T) = dimB + m + n+l.

(ii) [HE] If B is reduced, B[T]/I2(T) is reduced.

(iii) [Sh] If B is a domain, I2(T) is a prime ideal.

(iv) [Sh] If B is Cohen-Macaulay, B[T]/I2(T) is Cohen-Macaulay.

(iv) [HE] If B is a normal domain, B[T]/I2(T) is a normal domain.

(vi) [Sv] If B is Gorenstein, B[T]/I2(T) is Gorenstein if and only if m = n .

Proof, (i) follows from dimR[It, t~ ] = dim/? + 1 . (ii) and (iii) are imme-

diate from the presentation in (4.3.1)(ii). (iii) The Cohen-Macaulay property

of B[T]/I2(T) results from (2.2.5)(ii) applied to the setup of (2.1.7)—note the

poset there is wonderful. Referring to the notation of (2.1.7), one has an exact

sequence

0 -» R/I -^ R/(X)R © R/(Y)R -> R/(X, Y)R -» 0.

Therefore R/I has finite homological dimension over R. Applying (3.2.1) one

obtains that 32(1) is normal. Now it is well known that /?[//, t~l] is normal

if 32(1) is normal (cf., e.g., [HSV 2, (2.1.2)]). (v) In a vein similar to (iv), this

follows from (3.2.4).   D
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