Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The two-sided Stefan problem with a spatially dependent latent heat


Author: Terry R. McConnell
Journal: Trans. Amer. Math. Soc. 326 (1991), 669-699
MSC: Primary 35R35; Secondary 35K05, 60J70
DOI: https://doi.org/10.1090/S0002-9947-1991-1008699-5
MathSciNet review: 1008699
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove existence and uniqueness of solutions to a problem which generalizes the two-sided Stefan problem. The initial temperature distribution and variable latent heat may be given by positive measures rather than point functions, and the free boundaries which result are essentially arbitrary increasing functions which need not exhibit any degree of smoothness in general. Nevertheless, the solutions are "classical" in the sense that all derivatives and boundary values have the classical interpretation. We also study connections with the Skorohod embedding problem of probability theory and with a general class of optimal stopping problems.


References [Enhancements On Off] (What's this?)

  • [1] J. Azema and M. Yor, Une solution simple au problème de Skorohod, Séminaire de Probabilités XIII, Lecture Notes in Math., vol. 721, Springer-Verlag, New York, 1979, pp. 90-115. MR 544782 (82c:60073a)
  • [2] R. F. Bass, Skorohod stopping via stochastic integrals, Séminaire de Probabilités XVII, Lecture Notes in Math., vol. 986, Springer, New York, 1983, pp. 221-224. MR 770414 (86i:60207)
  • [3] J. Baxter and R. V. Chacon, Potentials of stopped distributions, Illinois J. Math. 18 (1974), 649-656. MR 0358960 (50:11417)
  • [4] L. Breiman, Probability, Addison-Wesley, Reading, Mass., 1968. MR 0229267 (37:4841)
  • [5] J. R. Canon, The one-dimensional heat equation, Encyclopedia of Mathematics and its Applications, Vol. 23, Addison-Wesley, Reading, Mass., 1984.
  • [6] P. R. Chacon, The filling scheme and barrier stopping times, Ph. D. Dissertation, Univ. of Washington, Seattle, 1985.
  • [7] R. Chacon and J. B. Walsh, One-dimensional potential embedding, Séminaire de Probabilités X, Lecture Notes in Math., vol. 511, Springer, New York, 1976, pp. 19-23. MR 0445598 (56:3934)
  • [8] J. L. Doob, Classical potential theory and its probabilistic counterpart, Springer-Verlag, Berlin, 1984. MR 731258 (85k:31001)
  • [9] L. Dubins, On a theorem of Skorohod, Ann. Math. Statist. 39 (1969), 2094-2097. MR 0234520 (38:2837)
  • [10] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and convergence, Wiley, New York, 1986. MR 838085 (88a:60130)
  • [11] N. Falkner, On Skorohod embedding in $ n$-dimensional Brownian motion by means of natural stopping times, Séminaire de Probabilités XIV, Lecture Notes in Math., vol. 784, Springer, New York, 1980, pp. 357-391. MR 580142 (83f:60106)
  • [12] D. Heath, Skorohod stopping via potential theory, Séminaire de Probabilités VIII, Lecture Notes in Math., vol. 381, Springer, New York, 1974, pp. 150-154. MR 0368185 (51:4426)
  • [13] K. Itô and H. P. McKean, Diffusion processes and their sample paths, Springer-Verlag, Berlin, 1974. MR 0345224 (49:9963)
  • [14] R. M. Loynes, Stopping times on Brownian motion: Some properties of Root's construction, Z. Wahrsch. Verw. Gebiete 16 (1970), 211-218. MR 0292170 (45:1257)
  • [15] I. Meilijson, On the Azema-Yor stopping time, Séminaire de Probabilités XVII, Lecture Notes in Math., vol. 986, Springer, New York, 1983, pp. 225-226. MR 770415 (86d:60052)
  • [16] P. A. Meyer, Le schéma de remplissage en temps continu, Séminaire de Probabilités VI, Lecture Notes in Math., vol. 258, Springer, New York, 1972, pp. 130-150. MR 0402946 (53:6760)
  • [17] E. Perkins, The Cereteli-Davis solution of the $ {H^1}$-embedding problem and an optimal embedding in Brownian motion, Seminar on Stochastic Processes (1985), Birkhäuser, Amsterdam, 1987. MR 896743 (88k:60085)
  • [18] D. H. Root, The existence of certain stopping times on Brownian motion, Ann. Math. Statist. 40 (1969), 715-718. MR 0238394 (38:6670)
  • [19] H. Rost, The stopping distributions of a Markov process, Invent. Math. 14 (1971), 1-16. MR 0346920 (49:11641)
  • [20] -, Skorohod stopping times of minimal variance, Séminarie de Probabilités X, Lecture Notes in Math., vol. 511, Springer, New York, 1976, pp. 194-208. MR 0445600 (56:3936)
  • [21] D. Schaeffer, A new proof of the infinite differentiability of the free boundary in the Stefan problem, J. Differential Equations 20 (1976), 266-269. MR 0390499 (52:11325)
  • [22] A. Schatz, Free boundary problems of Stefan type with prescribed flux, J. Math. Anal. Appl. 28 (1969), 569-579. MR 0267285 (42:2187)
  • [23] A. V. Skorohod, A limit theorem for sums of independent random variables, Dokl. Akad. Nauk SSSR 133 (1960), 34-35 (Russian). MR 0125605 (23:A2904)
  • [24] -, Studies in the theory of random processes, Kiev Univ., 1961; Addison-Wesley, Reading, Mass. 1965 (translation). MR 0185620 (32:3082b)
  • [25] P. Vallois, Le probleme de Skorohod sur $ \mathbb{R}$: Une approche avec le temps local, Séminaire de Probabilités XVIII, Lecture Notes in Math., vol. 986, Springer, New York, 1983, pp. 227-239. MR 770416 (86m:60200)
  • [26] P. van Moerbeke, On optimal stopping and free boundary problems, Arch. Rational Mech. Anal. 60 (1975), 101-148. MR 0413250 (54:1367)
  • [27] -, An optimal stopping problem with linear reward, Acta Math. 132 (1974), 111-151. MR 0376225 (51:12405)
  • [28] D. V. Widder, The heat equation, Academic Press, New York, 1975. MR 0466967 (57:6840)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35R35, 35K05, 60J70

Retrieve articles in all journals with MSC: 35R35, 35K05, 60J70


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1008699-5
Keywords: Stefan problem, free boundary problems, Skorohod embedding, optimal stopping, Brownian motion, parabolic potential theory
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society