Invariant arcs, Whitney levels, and Kelley continua

Author:
M. van de Vel

Journal:
Trans. Amer. Math. Soc. **326** (1991), 749-771

MSC:
Primary 54H12; Secondary 52A01, 54B20

MathSciNet review:
1010415

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: As an application of convexity in spaces of arcs, three results of a somewhat different nature have been obtained. The first one gives some simple conditions under which an arc of a semilattice is mapped back into itself by an order-preserving function. The second result states that certain Whitney levels are absolute retracts. Finally, Kelley continua are characterized by what we call approximating coselections.

**[C]**D. W. Curtis,*Application of a selection theorem to hyperspace contractibility*, Canad. J. Math.**37**(1985), no. 4, 747–759. MR**801425**, 10.4153/CJM-1985-040-7**[ENN]**Carl Eberhart, Sam B. Nadler Jr., and William O. Nowell Jr.,*Spaces of order arcs in hyperspaces*, Fund. Math.**112**(1981), no. 2, 111–120. MR**619487****[E]**Ryszard Engelking,*General topology*, PWN—Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60]. MR**0500780****[G&]**Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael W. Mislove, and Dana S. Scott,*A compendium of continuous lattices*, Springer-Verlag, Berlin-New York, 1980. MR**614752****[GN]**Jack T. Goodykoontz Jr. and Sam B. Nadler Jr.,*Whitney levels in hyperspaces of certain Peano continua*, Trans. Amer. Math. Soc.**274**(1982), no. 2, 671–694. MR**675074**, 10.1090/S0002-9947-1982-0675074-7**[J1]**R. E. Jamison,*A general theory of convexity*, Dissertation, University of Washington, Seattle, Washington, 1974.**[J2]**-,*Tietze's convexity theorem for semilattices and lattices*, Semigroup Forum**15**(1978), 357-373.**[M]**Ernest Michael,*Topologies on spaces of subsets*, Trans. Amer. Math. Soc.**71**(1951), 152–182. MR**0042109**, 10.1090/S0002-9947-1951-0042109-4**[vMV]**Jan van Mill and Marcel van de Vel,*Equality of the Lebesgue and the inductive dimension functions for compact spaces with a uniform convexity*, Colloq. Math.**50**(1986), no. 2, 187–200. MR**857852****[N]**Sam B. Nadler Jr.,*Hyperspaces of sets*, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions; Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49. MR**0500811****[P]**Ann Petrus,*Contractibility of Whitney continua in 𝐶(𝑋)*, General Topology Appl.**9**(1978), no. 3, 275–288. MR**510909****[V1]**M. van de Vel,*Pseudoboundaries and pseudo-interiors for topological convexities*, Dissertationes Math. (Rozprawy Mat.)**210**(1983), 72. MR**695220****[V2]**-,*A selection theorem for topological convex structures*, (to appear).**[V3]**M. van de Vel,*A Helly property of arcs*, Arch. Math. (Basel)**52**(1989), no. 3, 298–306. MR**989886**, 10.1007/BF01194394**[W]**L. E. Ward Jr.,*A note on Whitney maps*, Canad. Math. Bull.**23**(1980), no. 3, 373–374. MR**593400**, 10.4153/CMB-1980-055-4

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54H12,
52A01,
54B20

Retrieve articles in all journals with MSC: 54H12, 52A01, 54B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-1010415-8

Keywords:
Absolute retract,
approximating coselection,
arc,
continuous selection,
convex set,
Kelley continuum,
Lawson semilattice,
Whitney map

Article copyright:
© Copyright 1991
American Mathematical Society