Harmonic measure versus Hausdorff measures on repellers for holomorphic maps

Author:
Anna Zdunik

Journal:
Trans. Amer. Math. Soc. **326** (1991), 633-652

MSC:
Primary 58F11; Secondary 30D05, 31A15

DOI:
https://doi.org/10.1090/S0002-9947-1991-1031980-0

MathSciNet review:
1031980

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is a continuation of a joint paper of the author with F. Przytycki and M. Urbański. We study a harmonic measure on a boundary of so-called repelling boundary domain; an important example is a basin of a sink for a rational map. Using the results of the above-mentioned paper we prove that either the boundary of the domain is an analytically embedded circle or interval, or else the harmonic measure is singular with respect to the Hausdorff measure corresponding to the function for some .

**[B]**R. Bowen,*Equilibrium states and ergodic theory of Anosov diffeomorphisms*, Lecture Notes in Math., vol. 470, Springer-Verlag, Berlin-Heidelberg-New York, 1975. MR**0442989 (56:1364)****[D]**P. L. Duren,*Theory of**spaces*, Academic Press, New York and London, 1970. MR**0268655 (42:3552)****[Go]**G. M. Goluzin,*Geometric theory of functions of a complex variable*, Transl. Math. Monographs, vol. 26, Amer. Math. Soc, Providence, R.I., 1969. MR**0247039 (40:308)****[Ma]**A. Manning,*The dimension of the maximal measure for a polynomial map*, Ann. of Math.**119**(1984), 425-430. MR**740898 (85i:58068)****[Mkl]**N. G. Makarov,*Dominating subset, the support of harmonic measure and perturbations of the spectra of operators in Hilbert space*, Dokl. Akad. Nauk SSSR**274**(1984), 1033-1037. (Russian) MR**734937 (86c:47013)****[Mk2]**-,*On the distortion of boundary sets under conformal mappings*, Proc. London Math. Soc. (3)**51**(1985), 369-384. MR**794117 (87d:30012)****[Ø]**B. Øksendal,*Brownian motion and sets of harmonic measure zero*, Pacific J. Math.**95**(1981), 179-192. MR**631668 (83c:60106)****[P1]**F. Przytycki,*Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map*, Invent. Math.**80**(1985), 161-179. MR**784535 (86g:30035)****[P2]**-,*Riemann map and holomorphic dynamics*, Invent. Math.**85**(1986). MR**848680 (88j:58058)****[P3]**-,*On holomorphic perturbations of*, Bull. Polish Acad. Sci. Math.**34**(1986).**[Ph-St]**W. Phillipp and W. Stout,*Almost sure invariant principles for partial sums of weakly dependent random variables*, Mem. Amer. Math. Soc., no. 161, 1975.**[PUZ]**F. Przytycki, M. Urbański, and A. Zdunik,*Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps*, preprint, Univ. Warwick, 1986; part I, Ann. of Math.**130**(1989), 1-40; part II, Studia Math. (to appear). MR**1005606 (91i:58115)****[Su]**D. Sullivan, Seminar on conformal and hyperbolic geometry by D. P. Sullivan (Notes by M. Baker and J. Seade), preprint IHES, 1982.**[Z]**A. Zdunik,*Parabolic orbifolds and the dimension of the maximal measure for rational maps*, Invent. Math.**99**(1990), 627-649. MR**1032883 (90m:58120)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F11,
30D05,
31A15

Retrieve articles in all journals with MSC: 58F11, 30D05, 31A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-1031980-0

Article copyright:
© Copyright 1991
American Mathematical Society