Actions of loop groups on harmonic maps

Authors:
M. J. Bergvelt and M. A. Guest

Journal:
Trans. Amer. Math. Soc. **326** (1991), 861-886

MSC:
Primary 58E20; Secondary 22E67

DOI:
https://doi.org/10.1090/S0002-9947-1991-1062870-5

MathSciNet review:
1062870

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a general framework in which subgroups of the loop group act on the space of harmonic maps from to . This represents a simplification of the action considered by Zakharov-Mikhailov-Shabat [ZM, ZS] in that we take the contour for the Riemann-Hilbert problem to be a union of circles; however, it reduces the basic ingredient to the well-known Birkhoff decomposition of , and this facilitates a rigorous treatment. We give various concrete examples of the action, and use these to investigate a suggestion of Uhlenbeck [Uh] that a limiting version of such an action ("completion") gives rise to her fundamental process of "adding a uniton". It turns out that this does not occur, because completion preserves the energy of harmonic maps. However, in the special case of harmonic maps from to complex projective space, we describe a modification of this completion procedure which does indeed reproduce "adding a uniton".

**[AB]**J. Avan and G. Bellon,*Groups of dressing transformations for integrable models in dimension two*, Phys. Lett. B**213**(1988), 459-465. MR**967732 (90e:58056)****[AJS]**G. Arsenault, M. Jacques, and Y. Saint-Aubin,*Collapse and exponentiation of infinite symmetry algebras of Euclidean projective and Grassmannian sigma models*, J. Math. Phys.**29**(1988), 1465-1471. MR**944464 (89k:58298)****[At]**M. F. Atiyah,*Instantons in two and four dimensions*, Comm. Math. Phys.**93**(1984), 437-451. MR**763752 (86m:32042)****[EL]**J. Eells and L. Lemaire,*A report on harmonic maps*, Bull. London Math. Soc.**10**(1978), 1-68. MR**495450 (82b:58033)****[EW]**S. Erdem and J. C. Wood,*On the construction of harmonic maps into a Grassmannian*, J. London Math. Soc. (2)**28**(1983), 161-174. MR**703474 (85j:58044)****[Gul]**M. A. Guest,*Geometry of maps between generalized flag manifolds*, J. Differential Geom.**25**(1987), 223-247. MR**880184 (88f:58033)****[Gu2]**-,*Harmonic two-spheres in complex projective space and some open problems*, Exposition. Math. (to appear). MR**1149882 (93c:58053)****[JS]**M. Jacques and Y. Saint-Aubin,*Infinite dimensional Lie algebras acting on the solution space of various sigma models*, J. Math. Phys.**28**(1987), 2463-2479. MR**908018 (89c:58027)****[Po]**K. Pohlmeyer,*Integrable Hamiltonian systems and interactions through constraints*, Comm. Math. Phys.**46**(1976), 207-221. MR**0408535 (53:12299)****[PS]**A. N. Pressley and G. B. Segal,*Loop groups*, Oxford Univ. Press, 1986. MR**900587 (88i:22049)****[Ro]**Y. L. Rodin,*The Riemann boundary value problem on Riemann surfaces*, Reidel, Dordrecht, 1988.**[Se]**G. B. Segal,*Loop groups and harmonic maps*, Advances in Homotopy Theory (S. M. Salamon, B. Steer, and W. A. Sutherland, eds.), LMS Lecture Notes 139, Cambridge Univ. Press, 1989, pp. 153-164. MR**1055875 (91m:58043)****[Uh]**K. Uhlenbeck,*Harmonic maps into Lie groups (Classical solutions of the chiral model)*, J. Differential Geom.**30**(1989), 1-50. MR**1001271 (90g:58028)****[Va]**G. Valli,*On the energy spectrum of harmonic*-*spheres in unitary groups*, Topology**27**(1988), 129-136. MR**948176 (90f:58042)****[Wi]**G. Wilson,*Infinite dimensional Lie groups and algebraic geometry in soliton theory*, Philos. Trans. Roy. Soc. London Ser. A**315**(1985), 393-404. MR**836741 (87i:58089)****[Wo]**J. C. Wood,*Explicit construction and parametrization of harmonic two-spheres in the unitary group*, Proc. London Math. Soc.**58**(1989), 608-624. MR**988105 (90k:58055)****[ZM]**V. E. Zakharov and A. V. Mikhailov,*Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method*, Soviet Phys. JETP**47**(1978), 1017-1027. MR**524247 (80c:81115)****[ZS]**V. E. Zakharov and A. B. Shabat,*Integration of non-linear equations of mathematical physics by the inverse scattering method*. II, Functional Anal. Appl.**13**(1979), 13-22. MR**545363 (82m:35137)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58E20,
22E67

Retrieve articles in all journals with MSC: 58E20, 22E67

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1991-1062870-5

Article copyright:
© Copyright 1991
American Mathematical Society