Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Linear series with an $ N$-fold point on a general curve


Author: David Schubert
Journal: Trans. Amer. Math. Soc. 327 (1991), 117-124
MSC: Primary 14H10; Secondary 14C20
DOI: https://doi.org/10.1090/S0002-9947-1991-1005937-X
MathSciNet review: 1005937
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A linear series $ (V,\mathcal{L})$ on a curve $ X$ has an $ N$-fold point along a divisor $ D$ of degree $ N$ if $ \dim (V \cap {H^0}\;(X,\mathcal{L}\,(- D))) \geq \dim \;V - 1$. The dimensions of the families of linear series with an $ N$-fold point are determined for general curves.


References [Enhancements On Off] (What's this?)

  • [ACGH] E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Geometry of algebraic curves, Vol. 1, Springer, New York, 1984.
  • [C] M. Coppens, A remark on the embedding theorem for general smooth curves, Preprint No. 405, Univ. of Utrecht, 1986. MR 876221 (88c:14038)
  • [EH-1] D. Eisenbud and J. Harris, Divisors on general curves and cusptial rational curves, Invent. Math. 74 (1983), 371-418. MR 724011 (85h:14019)
  • [EH-2] -, Limit linear series: basic theory, Invent. Math. 85 (1986), 337-371. MR 846932 (87k:14024)
  • [K1] F. Knudsen, The projectivity of the moduli space of stable curves. II: The stacks $ {M_{g,n}}$, Math. Scand. 52 (1983), 161-199. MR 702953 (85d:14038a)
  • [K2] -, The projectivity of the moduli space of stable curves. III. The line bundles on $ {M_{g,n}}$, and a proof of the projectivity of $ {\overline M _{g,n}}$ in characteristic 0, Math. Scand. 52 (1983), 200-212. MR 702954 (85d:14038b)
  • [S] D. Schubert, Linear series with cusps and $ n$-fold points, Trans. Amer. Math. Soc. 304 (1987), 689-703. MR 911090 (88m:14017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14H10, 14C20

Retrieve articles in all journals with MSC: 14H10, 14C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1005937-X
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society