Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Solving ordinary differential equations in terms of series with real exponents


Authors: D. Yu. GrigorЬev and M. F. Singer
Journal: Trans. Amer. Math. Soc. 327 (1991), 329-351
MSC: Primary 12H05; Secondary 12D15
DOI: https://doi.org/10.1090/S0002-9947-1991-1012519-2
MathSciNet review: 1012519
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We generalize the Newton polygon procedure for algebraic equations to generate solutions of polynomial differential equations of the form $ \sum\nolimits_{i = 0}^\infty {{\alpha _i}{x^{{\beta _i}}}} $ where the $ {\alpha _i}$ are complex numbers and the $ {\beta _i}$ are real numbers with $ {\beta _0} > {\beta _1} > \cdots $. Using the differential version of the Newton polygon process, we show that any such a series solution is finitely determined and show how one can enumerate all such solutions of a given polynomial differential equation. We also show that the question of deciding if a system of polynomial differential equations has such a power series solution is undecidable.


References [Enhancements On Off] (What's this?)

  • [CO75] G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, Automata Theory and Formal Languages, 2nd GI Conference, Kaiserslautern (H. Brakhage, ed.), Lecture Notes in Computer Sci., vol. 33, Springer, 1975, pp. 134-183. MR 0403962 (53:7771)
  • [DE82] J. Della Dora, C. Dicrescenzo, and E. Tournier, An algorithm to obtain formal solutions of a linear homogeneous differential equation at an irregular singular point, EUROCAM '82, Lecture Notes in Computer Sci., vol. 174, Springer-Verlag, 1982, pp. 273-280. MR 680072 (84c:65094)
  • [DL84] J. Denef and L. Lipshitz, Power series solutions of algebraic differential equations, Math. Ann. 267 (1984), 213-238. MR 738249 (85j:12010)
  • [GR88] D. Yu. Grigor'ev, Complexity of deciding Tarski algebra, J. Symbolic Comput. 5 (1988), 65-108. MR 949113 (90b:03054)
  • [HI76] E. Hille, Ordinary differential equations in the complex domain, Wiley, New York, 1976. MR 0499382 (58:17266)
  • [LA68] D. Laugwitz, Eine nichtarchimedische Erweiterung angeordneter Körper, Math. Nachr. 37 (1968), 225-236. MR 0242798 (39:4125)
  • [LC54] T. Levi-Civita, Sugli infiniti ed infinitesimali actuali quali elementi analytici, Opere Matematiche, vol. 1, Zanichelli, Bologna, 1954, pp. 1-39. MR 0062680 (16:1k)
  • [LR75] A. H. Lightstone and A. Robinson, Nonarchimedian fields and asymptotic expansions, North-Holland, Amsterdam, 1975.
  • [MA39] S. Mac Lane, The universality of formal power series fields, Bull. Amer. Math. Soc. 45 (1939), 888-890. MR 0000610 (1:102c)
  • [MA70] Yu. Matijasevic, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191 (1970), 279-282; Soviet Math. Dokl. 11 (1970), 354-357. MR 0258744 (41:3390)
  • [OS35] A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper, Math. Z. 39 (1935), 269-404. MR 1545505
  • [RA78] J.-P. Ramis, Dévissage Gevrey, Soc. Math. de France Astérisque 59-60 (1978), 173-204. MR 542737 (81g:34010)
  • [RI66] J. F. Ritt, Differential algebra, Dover, New York, 1966. MR 0201431 (34:1315)
  • [RO73] A. Robinson, Function theory on some nonarchimedian fields, Amer. Math. Monthly 80 (1973), 87-109. MR 0330126 (48:8464)
  • [SE56] A. Seidenberg, An elimination theory for differential algebra, Univ. of California Press, vol. 3, 1956, pp. 31-66. MR 0082487 (18:558a)
  • [TA51] A. Tarski, A decision method for elementary algebra and geometry, Univ. of California Press, 1951. MR 0044472 (13:423a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 12H05, 12D15

Retrieve articles in all journals with MSC: 12H05, 12D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1012519-2
Keywords: Differential equations, series solutions, Newton polygon
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society