Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the relative reflexivity of finitely generated modules of operators


Author: Bojan Magajna
Journal: Trans. Amer. Math. Soc. 327 (1991), 221-249
MSC: Primary 47D25; Secondary 46L10, 47A15, 47C15
DOI: https://doi.org/10.1090/S0002-9947-1991-1038017-8
MathSciNet review: 1038017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{R}$ be a von Neumann algebra on a Hilbert space $ \mathcal{H}$ with commutant $ \mathcal{R}^{\prime}$ and centre $ \mathcal{C}$. For each subspace $ \mathcal{S}$ of $ \mathcal{R}$ let $ \operatorname{ref}_\mathcal{R}\,(\mathcal{S})$ be the space of all $ B \in \mathcal{R}$ such that $ XBY= 0$ for all $ X,Y \in \mathcal{R}$ satisfying $ X\,\mathcal{S}\,Y = 0$. If $ \operatorname{ref}_\mathcal{R}\,(\mathcal{S})= \mathcal{S}$, the space $ \mathcal{S}$ is called $ \mathcal{R}$-reflexive. (If $ \mathcal{R}= \mathcal{B}(\mathcal{H})$ and $ \mathcal{S}$ is an algebra containing the identity operator, $ \mathcal{R}$-reflexivity reduces to the usual reflexivity in operator theory.) The main result of the paper is the following: if $ \mathcal{S}$ is one-dimensional, or if $ \mathcal{S}$ is arbitrary finite-dimensional but $ \mathcal{R}$ has no central portions of type $ {{\text{I}}_n}$ for $ n > 1$, then the space $ \overline {\mathcal{C}\mathcal{S}} $ is $ \mathcal{R}$-reflexive and the space $ \overline {\mathcal{R}^{\prime}\,\mathcal{S}} $ is $ \mathcal{B}(\mathcal{H})$-reflexive, where the bar denotes the closure in the ultraweak operator topology. If $ \mathcal{R}$ is a factor, then $ \mathcal{R}^{\prime}\,\mathcal{S}$ is closed in the weak operator topology for each finite-dimensional subspace $ \mathcal{S}$ of $ \mathcal{R}$.


References [Enhancements On Off] (What's this?)

  • [1] C. A. Akemann and G. K. Pedersen, Ideal perturbations of elements in $ {C^{\ast}}$-algebras, Math. Scand. 41 (1977), 117-139. MR 0473848 (57:13507)
  • [2] W. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233. MR 0383098 (52:3979)
  • [3] -, Ten lectures on operator algebras, CBMS Regional Conf. Ser. in Math., no. 55, Amer. Math. Soc., Providence, R. I., 1983.
  • [4] B. Aupetit, An improvement of Kaplansky's lemma on locally algebraic operators, Studia Math. 88 (1988), 275-278. MR 932016 (89d:47002)
  • [5] E. A. Azoff, On finite rank operators and preannihilators, Mem. Amer. Math. Soc. No. 64 (1986). MR 858467 (88a:47041)
  • [6] E. A. Azoff, C. K. Fong, and F. Gilfeather, A reduction theory for non-self-adjoint operator algebras, Trans. Amer. Math. Soc. 224 (1976), 351-366. MR 0448109 (56:6419)
  • [7] J. B. Conway, A course in functional analysis, Springer-Verlag, New York, 1985. MR 768926 (86h:46001)
  • [8] K. R. Davidson, Nest algebras, Pitman Research Notes in Math., no. 191, Longman Scientific and Technical, 1988. MR 972978 (90f:47062)
  • [9] P. A. Fillmore and J. P. Williams, On operator ranges, Adv. in Math. 7 (1971), 254-281. MR 0293441 (45:2518)
  • [10] C. K. Fong and A. R. Sourour, On the operator identity $ \Sigma {A_{k}}X{B_k}= 0$, Canad. J. Math. 31 (1979), 845-857. MR 540912 (80h:47020)
  • [11] P. Gajendragadkar, Norm of a derivation on a von Neumann algebra, Trans. Amer. Math. Soc. 170 (1972), 165-170. MR 0305090 (46:4220)
  • [12] P. R. Halmos, A Hilbert space problem book, Springer-Verlag, Berlin, 1982. MR 675952 (84e:47001)
  • [13] I. N. Herstein, Rings with involution, Chicago Lectures in Math., Univ of. Chicago, 1976. MR 0442017 (56:406)
  • [14] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, vols. 1, 2, Academic Press, London, 1983, 1986.
  • [15] J. Kraus and D. R. Larson, Some applications of a technique for constructing reflexive operator algebras, J. Operator Theory 13 (1985), 227-236. MR 775995 (86d:47056)
  • [16] -, Reflexivity and distance formulae, J. London Math. Soc. 53 (1986), 340-356. MR 850224 (87m:47100)
  • [17] D. R. Larson, On similarity of nests in Hilbert space and in Banach spaces, Lecture Notes in Math., vol. 1332, Springer-Verlag, Berlin, 1988, pp. 179-194. MR 967097 (90a:47110)
  • [18] -, Reflexivity, algebraic reflexivity and linear interpolation, Amer. J. Math. 110 (1988), 283-299. MR 935008 (89d:47096)
  • [19] D. R. Larson and B. Solel, Nests and inner flows, J. Operator Theory 16 (1986), 157-164. MR 847337 (87i:46143)
  • [20] A. I. Loginov and V. S. Sulman, Hereditary and intermediate reflexivity of $ {W^{\ast}}$-algebras, Izv. Akad. Nauk SSSR 39 (1975), 1260-1273. (Russian) MR 0405124 (53:8919)
  • [21] B. Magajna, A system of operator equations, Canad. Math. Bull. 30 (1987), 200-209. MR 889539 (88e:47030)
  • [22] W. S. Martindale, Prime rings satisfying generalized polynomial identity, J. Algebra 12 (1969), 576-584. MR 0238897 (39:257)
  • [23] M. Mathieu, Elementary operators on prime $ {C^{\ast}}$-algebras. I, Math. Ann. 284 (1989), 223-244. MR 1000108 (90h:46092)
  • [24] F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), 116-229. MR 1503275
  • [25] G. K. Pedersen, $ {C^{\ast}}$-algebras and their automorphism groups, Academic Press, London, 1979. MR 548006 (81e:46037)
  • [26] V. S. Sulman, On reflexive operator algebras, Mat. Sb. 87 (1972), 179-187. (Russian) MR 0298436 (45:7488)
  • [27] M. Takesaki, Theory of operator algebras. I, Springer-Verlag, New York, 1979. MR 548728 (81e:46038)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47D25, 46L10, 47A15, 47C15

Retrieve articles in all journals with MSC: 47D25, 46L10, 47A15, 47C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1038017-8
Keywords: Subspaces of operators, reflexivity, elementary operators, von Neumann algebras
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society